OpenCV实战之实现手势虚拟缩放效果
夏天是冰红茶 人气:00、项目介绍
本篇将会以HandTrackingModule为模块,这里的模块与之前的有所不同,请按照本篇为准,前面的HandTrackingModule不足以完成本项目,本篇将会通过手势对本人的博客海报进行缩放,具体效果可以看下面的效果展示。
1、项目展示
2、项目搭建
首先在一个文件夹下建立HandTrackingModule.py文件以及gesture_zoom.py,以及一张图片,你可以按照你的喜好选择,建议尺寸不要过大。
在这里用到了食指的索引8,可以完成左右手食指的手势进行缩放。
3、项目的代码与讲解
HandTrackingModule.py:
import cv2 import mediapipe as mp import math class handDetector: def __init__(self, mode=False, maxHands=2, detectionCon=0.5, minTrackCon=0.5): self.mode = mode self.maxHands = maxHands self.detectionCon = detectionCon self.minTrackCon = minTrackCon self.mpHands = mp.solutions.hands self.hands = self.mpHands.Hands(static_image_mode=self.mode, max_num_hands=self.maxHands, min_detection_confidence=self.detectionCon, min_tracking_confidence=self.minTrackCon) self.mpDraw = mp.solutions.drawing_utils self.tipIds = [4, 8, 12, 16, 20] self.fingers = [] self.lmList = [] def findHands(self, img, draw=True, flipType=True): imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) self.results = self.hands.process(imgRGB) allHands = [] h, w, c = img.shape if self.results.multi_hand_landmarks: for handType, handLms in zip(self.results.multi_handedness, self.results.multi_hand_landmarks): myHand = {} ## lmList mylmList = [] xList = [] yList = [] for id, lm in enumerate(handLms.landmark): px, py, pz = int(lm.x * w), int(lm.y * h), int(lm.z * w) mylmList.append([px, py]) xList.append(px) yList.append(py) ## bbox xmin, xmax = min(xList), max(xList) ymin, ymax = min(yList), max(yList) boxW, boxH = xmax - xmin, ymax - ymin bbox = xmin, ymin, boxW, boxH cx, cy = bbox[0] + (bbox[2] // 2), \ bbox[1] + (bbox[3] // 2) myHand["lmList"] = mylmList myHand["bbox"] = bbox myHand["center"] = (cx, cy) if flipType: if handType.classification[0].label == "Right": myHand["type"] = "Left" else: myHand["type"] = "Right" else: myHand["type"] = handType.classification[0].label allHands.append(myHand) ## draw if draw: self.mpDraw.draw_landmarks(img, handLms, self.mpHands.HAND_CONNECTIONS) cv2.rectangle(img, (bbox[0] - 20, bbox[1] - 20), (bbox[0] + bbox[2] + 20, bbox[1] + bbox[3] + 20), (255, 0, 255), 2) cv2.putText(img, myHand["type"], (bbox[0] - 30, bbox[1] - 30), cv2.FONT_HERSHEY_PLAIN, 2, (255, 0, 255), 2) if draw: return allHands, img else: return allHands def fingersUp(self, myHand): myHandType = myHand["type"] myLmList = myHand["lmList"] if self.results.multi_hand_landmarks: fingers = [] # Thumb if myHandType == "Right": if myLmList[self.tipIds[0]][0] > myLmList[self.tipIds[0] - 1][0]: fingers.append(1) else: fingers.append(0) else: if myLmList[self.tipIds[0]][0] < myLmList[self.tipIds[0] - 1][0]: fingers.append(1) else: fingers.append(0) # 4 Fingers for id in range(1, 5): if myLmList[self.tipIds[id]][1] < myLmList[self.tipIds[id] - 2][1]: fingers.append(1) else: fingers.append(0) return fingers def findDistance(self, p1, p2, img=None): x1, y1 = p1 x2, y2 = p2 cx, cy = (x1 + x2) // 2, (y1 + y2) // 2 length = math.hypot(x2 - x1, y2 - y1) info = (x1, y1, x2, y2, cx, cy) if img is not None: cv2.circle(img, (x1, y1), 15, (255, 0, 255), cv2.FILLED) cv2.circle(img, (x2, y2), 15, (255, 0, 255), cv2.FILLED) cv2.line(img, (x1, y1), (x2, y2), (255, 0, 255), 3) cv2.circle(img, (cx, cy), 15, (255, 0, 255), cv2.FILLED) return length, info, img else: return length, info def main(): cap = cv2.VideoCapture(0) detector = handDetector(detectionCon=0.8, maxHands=2) while True: # Get image frame success, img = cap.read() # Find the hand and its landmarks hands, img = detector.findHands(img) # with draw # hands = detector.findHands(img, draw=False) # without draw if hands: # Hand 1 hand1 = hands[0] lmList1 = hand1["lmList"] # List of 21 Landmark points bbox1 = hand1["bbox"] # Bounding box info x,y,w,h centerPoint1 = hand1['center'] # center of the hand cx,cy handType1 = hand1["type"] # Handtype Left or Right fingers1 = detector.fingersUp(hand1) if len(hands) == 2: # Hand 2 hand2 = hands[1] lmList2 = hand2["lmList"] # List of 21 Landmark points bbox2 = hand2["bbox"] # Bounding box info x,y,w,h centerPoint2 = hand2['center'] # center of the hand cx,cy handType2 = hand2["type"] # Hand Type "Left" or "Right" fingers2 = detector.fingersUp(hand2) # Find Distance between two Landmarks. Could be same hand or different hands length, info, img = detector.findDistance(lmList1[8][0:2], lmList2[8][0:2], img) # with draw # length, info = detector.findDistance(lmList1[8], lmList2[8]) # with draw # Display cv2.imshow("Image", img) cv2.waitKey(1) if __name__ == "__main__": main()
gesture_zoom.py :
import cv2 import mediapipe as mp import time import HandTrackingModule as htm startDist = None scale = 0 cx, cy = 500,200 wCam, hCam = 1280,720 pTime = 0 cap = cv2.VideoCapture(0) cap.set(3, wCam) cap.set(4, hCam) cap.set(10,150) detector = htm.handDetector(detectionCon=0.75) while 1: success, img = cap.read() handsimformation,img=detector.findHands(img) img1 = cv2.imread("1.png") # img[0:360, 0:260] = img1 if len(handsimformation)==2: # print(detector.fingersUp(handsimformation[0]),detector.fingersUp(handsimformation[1])) #detector.fingersUp(handimformation[0]右手 if detector.fingersUp(handsimformation[0]) == [1, 1, 1, 0, 0] and \ detector.fingersUp(handsimformation[1]) == [1, 1, 1 ,0, 0]: lmList1 = handsimformation[0]['lmList'] lmList2 = handsimformation[1]['lmList'] if startDist is None: #lmList1[8],lmList2[8]右、左手指尖 # length,info,img=detector.findDistance(lmList1[8],lmList2[8], img) length, info, img = detector.findDistance(handsimformation[0]["center"], handsimformation[1]["center"], img) startDist=length length, info, img = detector.findDistance(handsimformation[0]["center"], handsimformation[1]["center"], img) # length, info, img = detector.findDistance(lmList1[8], lmList2[8], img) scale=int((length-startDist)//2) cx, cy=info[4:] print(scale) else: startDist=None try: h1, w1, _ = img1.shape newH, newW = ((h1 + scale) // 2) * 2, ((w1 + scale) // 2) * 2 img1 = cv2.resize(img1, (newW, newH)) img[cy-newH//2:cy+ newH//2, cx-newW//2:cx+newW//2] = img1 except: pass #################打印帧率##################### cTime = time.time() fps = 1 / (cTime - pTime) pTime = cTime cv2.putText(img, f'FPS: {int(fps)}', (40, 50), cv2.FONT_HERSHEY_COMPLEX, 1, (100, 0, 255), 3) cv2.imshow("image",img) k=cv2.waitKey(1) if k==27: break
前面的类模块,我不做过多的讲解,它的新添加功能,我会在讲解主文件的时候提到。
1.首先,导入我们需要的模块,第一步先编写打开摄像头的代码,确保摄像头的正常,并调节好窗口的设置——长、宽、亮度,并且用htm(HandTrackingModule的缩写,后面都是此意)handDetector调整置信度,让我们检测到手更准确。
2.其次,用findHands的得到手的landmark,我所设定的手势是左右手的大拇指、食指、中指高于其他四指,也就是这六根手指竖起,我们按照[1, 1, 1, 0, 0],[1, 1, 1, 0, 0]来设定,如果你不能确定,请解除这里的代码;
#print(detector.fingersUp(handsimformation[0]),detector.fingersUp(handsimformation[1]))
3.然后,在这里有两个handsimformation[0]['lmList'],handsimformation[0]["center"],分别代表我要取食指,和手掌中心点,那么展示的时候是用的中心点,可以按照个人的喜好去选择手掌的索引,startDist=None表示为没有检测到的手时的起始长度,而经过每次迭代后,获得的距离length-起始长度,如果我增大手的距离,我就能得到一个较大的scale,由于打印的scale太大,我不希望它变化太快,所以做了二分后取整,如果得到的是一个负值,那么就缩小图片,那么我们没有检测到手时,就要令startDist=None。
4.之后来看,info = (x1, y1, x2, y2, cx, cy),根据索引得到中心值,然后,我们来获取现在海报的大小,然后加上我们scale,实现动态的缩放,但在这里要注意,这里进行了整出2,在乘以2的操作,如果是参数是偶数,我们无需理会,但如果遇到了奇数就会出现少一个像素点的问题,比如,值为9,整除2后得到的为4,4+4=8<9,所以为了确保正确,加了这一步。加入try...except语句是因为图像超出窗口时发出会发出警告,起到超出时此代码将不起作用,回到窗口时,可以继续操作。
5.最后,打印出我们的帧率
加载全部内容