C++AVL树4种旋转详讲(左单旋、右单旋、左右双旋、右左双旋)
一个小井盖 人气:0引子:AVL树是因为什么出现的?
二叉搜索树可以缩短查找的效率,如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下时间复杂度:O(N)
两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.Landis在1962年 发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(对树中的结点进行调整),即为AVl树以他们的名字缩写命名也可以叫高度二叉搜索树
1.AVl树的的特性
一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树,它就是AVL树。
- 它的左右子树都是AVL树
- 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1),节点右子树最长路径-左子树最长路径
如果AVl树有n个结点,其高度可保持在O(logN) ,搜索时间复杂度O(logN),为什么?
答:左右子树高度之差的绝对值不超过1,那么只有最后一层会差一部分的节点;
2.AVl树的框架
template<class K, class V> struct AVLtreeNode { //节点构造函数 AVLtreeNode(const pair<K, V>& kv) :_left(nullptr) ,_right(nullptr) ,_parent(nullptr) ,_bf(0) ,_kv(kv) {} //节点的成员 //三叉链 AVLtreeNode<K, V>* _left; AVLtreeNode<K, V>* _right; AVLtreeNode<K, V>* _parent; int _bf;//平衡因子 //数据使用库里面的pair类存储的kv pair<K, V> _kv; }; template<class K,class V> class AVLtree { typedef AVLtreeNode<K, V> Node; public: //构造函数 AVLtree() :_root(nullptr) {} //四种旋转 void RotateL(Node* parent) void RotateR(Node* parent) void RotateLR(Node* parent) void RotateRL(Node* parent) //插入 bool Insert(const pair<K, V>& kv) //寻找 Node* Find(const K& kv) private: Node* _root; };
三叉链是什么?
3.AVL树的插入
bool Insert(const pair<K, V>& kv) { if (_root == nullptr) { _root = new Node(kv); return true; } Node* parent = _root, *cur = _root; while (cur) { //找nulptr,如果已经有这个key了,二叉搜索树的特性不支持冗余,所以返回失败 if (cur->_kv.first > kv.first) { parent = cur; cur = cur->_left; } else if (cur->_kv.first <kv.first) { parent = cur; cur = cur->_right; } else { return false; } } // cur = new Node(kv); //判断孩子在父亲的左边还是右边 if (cur->_kv.first > parent->_kv.first) { parent->_right = cur; cur->_parent = parent; } else { parent->_left = cur; cur->_parent = parent; } while (parent) { //影响一条路径所有的祖先 if (parent->_right == cur) parent->_bf++; else parent->_bf--; if (parent->_bf == 0) { //左右平衡了不会再影响祖先了 break; } if (parent->_bf == 1 || parent->_bf == -1) { //当前节点所在子树变了,会影响父亲 // 继续往上更新 cur = parent; parent = parent->_parent; } else if (parent->_bf == 2 || parent->_bf == -2) { //parent所在子树已经不平衡,需要旋转处理一下 if (parent->_bf == -2) { if (cur->_bf == -1) // 右单旋 RotateR(parent); else // cur->_bf == 1 RotateLR(parent); } else // parent->_bf == 2 { if (cur->_bf == 1) // 左单旋 RotateL(parent); else // cur->_bf == -1 RotateRL(parent); } break; } else { // 插入节点之前,树已经不平衡了,或者bf出错。需要检查其他逻辑 assert(false); } } return true; }
插入整体逻辑:
- 如果还没有元素是一课空树,直接插入即可;如果有元素,按pair的first(key)和比较的节点比较结果为大说明为空的哪个位置在右边,和比较的节点比较的结果小说明为空的哪个位置在左边,如果相等说明已经有这个元素了,二叉搜索树不支持冗余返回一个pair类第一个成员为那个相同元素的map的迭代器和第二个成员为false的pair类迭代器;
- 不知道这个已经找到的位置在父节点的左边还是右边,需要判断一下,然后插入元素;
- 插入元素的后那么平衡因子将发生变化,为0说明这个父亲节点左右平衡不会影响其他节点,为1或者-1需要向上调整,为2或者-2说明已经不平衡需要旋转;
节点右子树最长路径-左子树最长路径,右边插入节点就+,左边插入节点就-;
3.1四种旋转(左单旋、右单旋、左右双旋、右左双旋)
3.1.1左单旋
- 调用函数是传的参数是轴点
- 要保留轴点的父亲,以及调整三叉链
- 调整后原来的孩子和父亲(轴点)的平衡因子都置为0;
void RotateR(Node* parent) { //轴点的左,孩子节点 Node* subL = parent->_left; //孩子节点的右 Node* subLR = subL->_right; //我的右当你(轴点)的左 parent->_left = subLR; //调整三叉链 if (subLR) subLR->_parent = parent; //你(轴点)做我的右 subL->_right = parent; //调整三叉链 Node* parentParent = parent->_parent; parent->_parent = subL; if (parent == _root) { _root = subL; _root->_parent = nullptr; } else { //轴点的父亲新的孩子节点 if (parentParent->_left == parent) parentParent->_left = subL; else parentParent->_right = subL; subL->_parent = parentParent; } subL->_bf = parent->_bf = 0; }
3.1.2右单旋
- 调用函数是传的参数是轴点
- 要保留轴点的父亲,以及调整三叉链
- 调整后原来的孩子和父亲(轴点)的平衡因子都置为0;
void RotateL(Node* parent) { //轴点的右,孩子节点 Node* subR = parent->_right; //孩子节点的左 Node* subRL = subR->_left; //我的左当你(轴点)的右 parent->_right = subRL; //调整三叉链 if (subRL) { subRL->_parent = parent; } //你(轴点)做我的左 subR->_left = parent; Node* parentparent = parent->_parent; parent->_parent = subR; if (parent == _root) { if (parentparent->_left == parent) parentparent->_left = subR; else parentparent->_right = subR; subR->_parent = parentparent; } else { subR->_parent = nullptr; _root = subR; } subR->_bf = parent->_bf = 0; }
3.1.3左右双旋
- 调用左单旋是传的参数是轴点1,右单旋传的轴点2
- 平衡因子分3种情况,依靠3个被改变节点中最后一个来判断
void RotateLR(Node* parent) { Node* subL = parent->_left; Node* subLR = subL->_right; int bf = subLR->_bf; RotateL(parent->_left); RotateR(parent); // ...平衡因子调节还需要具体分析 if (bf == -1) { subL->_bf = 0; parent->_bf = 1; subLR->_bf = 0; } else if (bf == 1) { parent->_bf = 0; subL->_bf = -1; subLR->_bf = 0; } else if (bf == 0) { parent->_bf = 0; subL->_bf = 0; subLR->_bf = 0; } else { assert(false); } }
依靠3个被改变节点中最后一个来判断
3.1.4右左双旋
- 调用右单旋是传的参数是轴点1,左单旋传的轴点2
- 平衡因子分3种情况,依靠3个被改变节点中最后一个来判断
void RotateRL(Node* parent) { Node* subR = parent->_right; Node* subRL = subR->_left; int bf = subRL->_bf; RotateR(parent->_right); RotateL(parent); // 平衡因子更新 if (bf == 1) { subR->_bf = 0; parent->_bf = -1; subRL->_bf = 0; } else if (bf == -1) { parent->_bf = 0; subR->_bf = 1; subRL->_bf = 0; } else if (bf == 0) { parent->_bf = 0; subR->_bf = 0; subRL->_bf = 0; } else { assert(false); } }
附:AVL的性能
AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证查询时高效的时间复杂度,即log2(N)
但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:
插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。
总结
- 调用旋转的实参是轴点
- 左单旋:我的左当你的右,你(轴点)当我的左
- 右单旋:我的右当你的左,你(轴点)当我的右
加载全部内容