亲宝软件园·资讯

展开

如何使用python读取Excel指定范围并转为数组

knighthood2001 人气:0

前言

最近需要读取Excel中的内容,然后进行后续操作,对于这块知识,博主以前以为自己不会涉及到,但是现在一涉及到,第一步就错了,搞了好久。真的心累。因此写了这篇博客。 

目的:

excel中存放着数据,如果要进行计算及其它操作,首先就要进行读取。

我们先来看一下python中能操作Excel的库对比(一共九个库):

可以发现,还是挺多的

这里使用的是xlrd库。

安装

这里首先就是导入这个包,

pip install xlrd==1.2.0

xlrd包版本最好是1.2.0,因为笔者使用2.多版本的xlrd时,代码出现了类似下面的报错,也就是说xlrd版本太高会导致无法支持读取xlsx后缀的excel。

xlrd.biffh.XLRDError: Excel xlsx file; not supported

大家可以去试试将excel另存,看看保存类型。

目前笔者使用的是Excel2019版本的,默认保存类型为xlsx。

如果你之前已经安装xlrd高版本或更低版本了,建议先卸载一下,重新安装。

pip uninstall xlrd
pip install xlrd==1.2.0

实例

初阶 

一个excel中有如上数据,我们需要将其提取出来,方便python进行后续操作。

代码如下:

def extract1(file,index=0):
    workbook = xlrd.open_workbook(file)
    worksheet = workbook.sheet_by_index(index)
    rows = worksheet.nrows
    all = []
    for i in range(rows):
        a = worksheet.row_values(i)[:]
        all.append(a)
    print(all)
    cc = np.array(all)
    print(cc)
    return cc

file是文件的路径及名称,index就是当前sheet表的索引。 下图就是具体的索引。

当然也可以根据sheet表的名称。

如下面代码第一行按照的是索引方式,第二行按照的是sheet名称。大家可自行选择

    worksheet = workbook.sheet_by_index(0)
    worksheet = workbook.sheet_by_name("sheet1")
rows = worksheet.nrows

返回的是sheet表的行数,ncols则是列数

    all = []
    for i in range(rows):
        a = worksheet.row_values(i)[:]
        all.append(a)

首先定义一个空列表,然后遍历每行,将里面的数据写入列表中,

row_values()

是用来返回给定行中单元格值的切片。 

最后将其转换成数组类型即可。(按要求来,大家也可以不换)

下图是结果:

换个高级的写法,用推导式写(浓缩才是精华)

def extract(file,index=0):
    workbook = xlrd.open_workbook(file)
    worksheet = workbook.sheet_by_index(index)
    rows = worksheet.nrows
    c = tuple(worksheet.row_values(i)[:] for i in range(rows))
    a = np.array(c)
    print(a)
    return a

 代码行数瞬间缩短了。

最好调用一下函数即可

file = r'C:\Users\knighthood\OneDrive\桌面\11.xlsx'
extract1(file)

进阶1

要求:假如我excel只要图中框出来的区域。

以下为了看的较为简便,我使用推导式的代码

def confine_array(file,index=0):
    workbook = xlrd.open_workbook(file)
    worksheet = workbook.sheet_by_index(index)
    rows = worksheet.nrows
    c = tuple(worksheet.row_values(i)[1:] for i in range(1, rows))
    a = np.array(c)
    print(a)
    return a

如上,可以发现,代码变化之处就下面这一行。

    c = tuple(worksheet.row_values(i)[1:] for i in range(1, rows))

一步步讲解:

①for i in range(1, rows)

        首先对于后面的for循环,i控制的就是获取的行,更改其范围就会更改获取到的行、行数。

如果是上面说的(1,rows),则对应着获取第二行到最后一行,(0表示第一行)

②worksheet.row_values(i)[1:]

        最后的[1:](本来的代码中是没有或者是[:])表示的是i行的元素从第2列(个)获取到最后一行(个)。

因此我们只需要更改这两处就可以获得不同的内容矩阵(如下)。

def flexible_array(file,index=0,row=1,col=1):
    workbook = xlrd.open_workbook(file)
    worksheet = workbook.sheet_by_index(index)
    rows = worksheet.nrows
    c = tuple(worksheet.row_values(i)[col:] for i in range(row,rows))
    a = np.array(c)
    print(a)
    return a

结果如下图 

进阶2

要求:能不能更简化一点,根据我从哪个位置要数据,如第二行第二列开始,将这后面的数据进行读取。每次这样对来对去,容易出错,还是根据行列开始计算比较方便。

这里为了防止行列一样,我就多加了一列。

def flexible1_array(file,index=0,row=1,col=1):
    workbook = xlrd.open_workbook(file)
    worksheet = workbook.sheet_by_index(index)
    rows = worksheet.nrows
    c = tuple(worksheet.row_values(i)[col-1:] for i in range(row-1,rows))
    a = np.array(c)
    print(a)
    return a

代码也主要变化了这一行 

    c = tuple(worksheet.row_values(i)[col-1:] for i in range(row-1,rows))

这里笔者就不多解释了。 

现在就可以根据需要的起始单元格所在的行列进行选取所要的内容。

进阶3

要求:不需要最后一列

这里的话,笔者就设置了最后需要的行和列作为结束的读取。

def flexible2_array(file,index=0,row=1,col=1,end_row=None,end_col=None):
    workbook = xlrd.open_workbook(file)
    worksheet = workbook.sheet_by_index(index)
    rows = worksheet.nrows
    if end_row is None:
        c = tuple(worksheet.row_values(i)[col-1:end_col] for i in range(row-1, rows))
    else:
        c = tuple(worksheet.row_values(i)[col - 1:end_col] for i in range(row - 1, end_row))
    a = np.array(c)
    print(a)
    return a

上述代码意思是,如果不输入结束的行和列,读取到的是包含数据的行列,如果输入了行和列(或者其中一个),就读取相应的内容。由于end_row放在range()函数中,因此需要加个if判断。

结果如下:

        此外,我还发现,end_col由于放在[]中,可输入负数(不懂的可以去看看python列表负索引)。

不过这里的-1,其实际是排除了最后一列,从你输入的行列到,你输入的结束行和倒数第二列。

有些人可能会觉得别扭(比如我,更喜欢-1表示从起始列到最后一列,-2表示从起始列到倒数第二列)

def flexible3_array(file,index=0,row=1,col=1,end_row=None,end_col=None):
    workbook = xlrd.open_workbook(file)
    worksheet = workbook.sheet_by_index(index)
    rows = worksheet.nrows
    if end_row is None:
        c = tuple(worksheet.row_values(i)[col-1:end_col if end_col > 0 else end_col+1] for i in range(row-1, rows))
    else:
        c = tuple(worksheet.row_values(i)[col-1:end_col if end_col > 0 else end_col+1] for i in range(row - 1, end_row))
    a = np.array(c)
    print(a)
    return a

这里,代码中将判断end_col是否为负,使用了if-else写在一行。减少了很多代码判断量,使看起来更简洁。 

这里看个人喜好是否使用这个方法。 

还有一个end_col参数使用负数的原因是,end_row由于在excel中对应的是行,其用的是数字表示,而excel中列用字母表示,因此如果当数据列数太多的时候(如下图),去数列还是挺麻烦的

总结

上述内容是一步一步进行修改添加的,对应着平时要求的逐渐添加,功能的逐渐完善。

笔者在上篇构建层次分析法,用到的数据矩阵,可以和这篇一起结合,通过excel读取转为数组,然后进行层次分析法的操作。

加载全部内容

相关教程
猜你喜欢
用户评论