亲宝软件园·资讯

展开

Java二叉搜索树

刘婉晴 人气:0

一、题目描述

给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。

来源:https://leetcode.cn/problems/unique-binary-search-trees/

二、思路

本题可以使用动态规划的方式解决,我们先来看一下大题思路。以 n = 3 为例,n = 3 时的不同的二叉搜索树数目,可以通过分别 以 1 为根节点,以 2 为根节点,以 3 为根节点 的不同的二叉搜索树的数量加和获得。

那么问题就来到了如何得到 以 1 为根节点,以 2 为根节点,以 3 为根节点 的不同二叉搜索树数量。这就是我们动态规划,主要处理的问题。

因此 最终结果为

dp[1-1] * dp[3-1] + dp[2-1] * dp[3-2] + dp[3-1] * dp[3-3]

分析完了 n = 3 的情况,下面我们来看一下一般情况:

1. dp数组以及下标的含义:

dp[] 数组表示二叉搜索树数量,下标 i 表示当 n = i 时,所含的二叉搜索树数量

2. 确定递推公式:

dp[i] += dp[i-1] * dp[i-j] (其中 1<=j<=i, 表示以 j 为根节点的二叉搜索树)

3. dp数组如何初始化

4. 确定遍历顺序:

节点数为 3 的二叉搜索树种类数,需要用节点数为 2 的二叉搜索树推出,因此顺序遍历 从 3 ~ n 即可

三、代码

    // 不同的二叉搜索树
    public int numTrees(int n) {
        int[] dp = new int[n+1];
        dp[0] = 1;
        dp[1] = 1; // 初始化动态规划数组
        for(int i=2; i<n+1; i++){
            for(int j=1; j<=i; j++){ // 分别以 1 ~ i 为根节点,计算二叉树种类数,累加到结果中
                dp[i] += dp[j-1]*dp[i-j];
            }
        }
        return dp[n];
    }

加载全部内容

相关教程
猜你喜欢
用户评论