亲宝软件园·资讯

展开

Netty游戏服务器

HenryBlog 人气:0

一、Reactor模式和Netty线程模型

最近因为工作需要,学习了一段时间Netty的源码,并做了一个简单的分享,研究还不是特别深入,继续努力。因为分享也不涉及公司业务,所以这里也把这次对源码的研究成果分享出来 以下都是在游戏服务器开发中针对Netty使用需要了解知识点以及相关优化

这次分享主要设计以下内容

客户端连接数的限制

端口号资源

cat /proc/sys/net/ipv4/ip_local_port_range

文件描述符资源

1. BIO模型

2. NIO模型

客户端连接数与服务器线程数比例是n:1

3. Reacor模型

①. 单Reacor单线程模型

    所有IO在同一个NIO线程完成(处理连接,分派请求,编码,解码,逻辑运算,发送)

优点

缺点

reactor单线程模型图

netty reactor单线程模型图

Netty对应实现方式

// Netty对应实现方式:创建io线程组是,boss和worker,使用同一个线程组,并且线程数为1
EventLoopGroup ioGroup = new NioEventLoopGroup(1);
b.group(ioGroup, ioGroup)
        .channel(NioServerSocketChannel.class)
        .childHandler(initializer);
ChannelFuture f = b.bind(portNumner);
cf = f.sync();
f.get();

②. 单Reactor多线程模型

根据单线程模型,io处理中最耗时的编码,解码,逻辑运算等cpu消耗较多的部分,可提取出来使用多线程实现,并充分利用多核cpu的优势

优点

多线程处理逻辑运算,提高多核CPU利用率

缺点

对于单Reactor来说,大量链接的IO事件处理依然是性能瓶颈

reactor多线程模型图

netty reactor多线程模型图

Netty对应实现方式

// Netty对应实现方式:创建io线程组是,boss和worker,使用同一个线程组,并且线程数为1,把逻辑运算部分投递到用户自定义线程处理
EventLoopGroup ioGroup = new NioEventLoopGroup(1);
b.group(ioGroup, ioGroup)
        .channel(NioServerSocketChannel.class)
        .childHandler(initializer);
ChannelFuture f = b.bind(portNumner);
cf = f.sync();
f.get();

③. 主从Reactor多线程模型

根据多线程模型,可把它的性能瓶颈做进一步优化,即把reactor由单个改为reactor线程池,把原来的reactor分为mainReactor和subReactor

优点

reactor主从多线程模型图

netty reactor主从多线程模型图

Netty对应实现方式

// Netty对应实现方式:创建io线程组boss和worker,boss线程数为1,work线程数为cpu*2(一般IO密集可设置为2倍cpu核数)
EventLoopGroup bossGroup = new NioEventLoopGroup(1);
EventLoopGroup workerGroup = new NioEventLoopGroup();
b.group(bossGroup, workerGroup)
        .channel(NioServerSocketChannel.class)
        .childHandler(initializer);
ChannelFuture f = b.bind(portNumner);
cf = f.sync();
f.get();

④. 部分源码分析

// 1.构造参数不传或传0,默认取系统参数配置,没有参数配置,取CPU核数*2
super(nThreads == 0 ? DEFAULT_EVENT_LOOP_THREADS : nThreads, executor, args);
private static final int DEFAULT_EVENT_LOOP_THREADS;
static {
    DEFAULT_EVENT_LOOP_THREADS = Math.max(1, SystemPropertyUtil.getInt(
            "io.netty.eventLoopThreads", NettyRuntime.availableProcessors() * 2));
}
// 2.不同版本的JDK会有不同版本的SelectorProvider实现,Windows下的是WindowsSelectorProvider
public NioEventLoopGroup(int nThreads, Executor executor) {
    //默认selector,最终实现类似:https://github.com/frohoff/jdk8u-jdk/blob/master/src/macosx/classes/sun/nio/ch/DefaultSelectorProvider.java
    //basic flow: 1 java.nio.channels.spi.SelectorProvider 2 META-INF/services 3 default
    this(nThreads, executor, SelectorProvider.provider());
}
// 3.创建nThread个EventExecutor,并封装到选择器chooser,chooser会根据线程数分别有两种实现(GenericEventExecutorChooser和PowerOfTwoEventExecutorChooser,算法不同,但实现逻辑一样,就是均匀的分配线程处理)
EventExecutorChooserFactory.EventExecutorChooser chooser;
children = new EventExecutor[nThreads];
for (int i = 0; i < nThreads; i ++) {
    // ...
    children[i] = newChild(executor, args);
    // ...
}
chooser = chooserFactory.newChooser(children);
// 两种方式设置group
// parent和child使用同一个group,调用仍然是分别设置parent和child
@Override
public ServerBootstrap group(EventLoopGroup group) {
    return group(group, group);
}
ServerBootstrap.group(EventLoopGroup parentGroup, EventLoopGroup childGroup){
    // 具体代码略,可直接参考源码
    // 里面实现内容是把parentGroup绑定到this.group,把childGroup绑定到this.childGroup
}
// 调用顺序
ServerBootstrap:bind() -> doBind() -> initAndRegister()
private ChannelFuture doBind(final SocketAddress localAddress) {
    final ChannelFuture regFuture = initAndRegister();
    // ...
    doBind0(regFuture, channel, localAddress, promise);
    // ...
}
final ChannelFuture initAndRegister() {
    // 创建ServerSocketChannel
    Channel channel = channelFactory.newChannel();
    // ...
    // 开始register
    ChannelFuture regFuture = config().group().register(channel);
    // register调用顺序
    // next().register(channel) -> (EventLoop) super.next() -> chooser.next()
    // ...
}

由以上源码可得知,bind只在起服调用一次,因此bossGroup仅调用一次regist,也就是仅调用一次next,因此只有一根线程是有用的,其余线程都是废弃的,所以bossGroup线程数设置为1即可

// 启动BossGroup线程并绑定本地SocketAddress
private static void doBind0(
        final ChannelFuture regFuture, final Channel channel,
        final SocketAddress localAddress, final ChannelPromise promise) {
    channel.eventLoop().execute(new Runnable() {
        @Override
        public void run() {
            if (regFuture.isSuccess()) {
                channel.bind(localAddress, promise).addListener(ChannelFutureListener.CLOSE_ON_FAILURE);
            } else {
                promise.setFailure(regFuture.cause());
            }
        }
    });
}
// 消息事件读取
NioEventLoop.run() -> processSelectedKeys() -> ... -> ServerBootstrapAcceptor.channelRead
// ServerBootstrapAcceptor.channelRead处理客户端连接事件
// 最后一行的childGroup.register的逻辑和上面的代码调用处一样
public void channelRead(ChannelHandlerContext ctx, Object msg) {
    child.pipeline().addLast(childHandler);
    setChannelOptions(child, childOptions, logger);
    setAttributes(child, childAttrs);
    childGroup.register(child)
}

二、select/poll和epoll

1.概念

while(1) {
  nready = select(list);
  // 用户层依然要遍历,只不过少了很多无效的系统调用
  for(fd <-- fdlist) {
    if(fd != -1) {
      // 只读已就绪的文件描述符
      read(fd, buf);
      // 总共只有 nready 个已就绪描述符,不用过多遍历
      if(--nready == 0) break;
    }
  }
}

poll(时间复杂度O(n)):同select,不过把fd数组换成了fd链表,去掉了fd最大连接数(1024个)的数量限制

epoll(时间复杂度O(1)):解决了select/poll的几个缺陷

epoll是操作系统基于事件关联fd,做了以下优化:

epoll仅在Linux系统上支持

2.jdk提供selector

// DefaultSelectorProvider.create方法在不同版本的jdk下有不同实现,创建不同Selector
// Windows版本的jdk,其实现中调用的是native的poll方法
public static SelectorProvider create() {
    return new WindowsSelectorProvider();
}
// Linux版本的jdk
public static SelectorProvider create() {
    String str = (String)AccessController.doPrivileged(new GetPropertyAction("os.name"));
    if (str.equals("SunOS")) {
        return createProvider("sun.nio.ch.DevPollSelectorProvider");
    }
    if (str.equals("Linux")) {
        return createProvider("sun.nio.ch.EPollSelectorProvider");
    }
    return new PollSelectorProvider();
}

3.Netty提供的Epoll封装

netty依然基于epoll做了一层封装,主要做了以下事情:

(1)java的nio默认使用水平触发,Netty的Epoll默认使用边缘触发,且可配置

(2)Netty的Epoll提供更多的nio的可配参数。

(3)调用c代码,更少gc,更少synchronized 具体可以参考源码NioEventLoop.run和EpollEventLoop.run进行对比

4.Netty相关类图

线程组类图

channel类图

5.配置Netty为EpollEventLoop

// 创建指定的EventLoopGroup
bossGroup = new EpollEventLoopGroup(1, new DefaultThreadFactory("BOSS_LOOP"));
workerGroup = new EpollEventLoopGroup(32, new DefaultThreadFactory("IO_LOOP"));
b.group(bossGroup, workerGroup)
        // 指定channel的class
        .channel(EpollServerSocketChannel.class)
        .childHandler(initializer);
// 其中channel(clz)方法是通过class来new一个反射ServerSocketChannel创建工厂类
public B channel(Class<? extends C> channelClass) {
    if (channelClass == null) {
        throw new NullPointerException("channelClass");
    }
    return channelFactory(new ReflectiveChannelFactory<C>(channelClass));
}
final ChannelFuture initAndRegister() {
    // ...
    Channel channel = channelFactory.newChannel();
    // ...
}

三、Netty相关参数

1.SO_KEEPALIVE

childOption(ChannelOption.SO_KEEPALIVE, true)

TCP链路探活

2.SO_REUSEADDR

option(ChannelOption.SO_REUSEADDR, true)

重用处于TIME_WAIT但是未完全关闭的socket地址,让端口释放后可立即被重用。默认关闭,需要手动开启

3.TCP_NODELAY

childOption(ChannelOption.TCP_NODELAY, true)

IP报文格式

TCP报文格式

开启则禁用TCP Negal算法,优点低延时,缺点在大量小数据包的情况下,网络利用率低

关闭则开启TCP Negal算法,优点提高网络利用率(数据缓存到一定量才发送),缺点延时高

Negal算法

MSS计算规则 MSS的值是在TCP三次握手建立连接的过程中,经通信双方协商确定的 802.3标准里,规定了一个以太帧的数据部分(Payload)的最大长度是1500个字节(MTU)

MSS = MTU - IP首部 - TCP首部
以太网环境下:
  MTU = 1500字节
IP首部 = 32*5/4 = 160bit = 20字节
TCP首部 = 32*5/4 = 160bit = 20字节
最终得出MSS = 1460字节

结论:因为游戏服务器的实时性要求,在网络带宽足够的情况下,建议开启TCP_NODELAY,关闭Negal算法,带宽可以浪费,响应必须及时

注意:需要客户端服务器均关闭Negal算法,否则仍然会有延迟发送,影响传输速度

4.SO_BACKLOG

option(ChannelOption.SO_BACKLOG, 100)

操作系统内核中维护的两个队列

cat /proc/sys/net/ipv4/tcp_max_syn_backlog
cat /proc/sys/net/core/somaxconn

netty对于backlog的默认值设置在NetUtil类253行

SOMAXCONN = AccessController.doPrivileged(new PrivilegedAction<Integer>() {
    @Override
    public Integer run() {
        // 1.设置默认值
        int somaxconn = PlatformDependent.isWindows() ? 200 : 128;
        File file = new File("/proc/sys/net/core/somaxconn");
        if (file.exists()) {
            // 2.文件存在,读取操作系统配置
            in = new BufferedReader(new FileReader(file));
            somaxconn = Integer.parseInt(in.readLine());
        } else {
            // 3.文件不存在,从各个参数中读取
            if (SystemPropertyUtil.getBoolean("io.netty.net.somaxconn.trySysctl", false)) {
                tmp = sysctlGetInt("kern.ipc.somaxconn");
                if (tmp == null) {
                    tmp = sysctlGetInt("kern.ipc.soacceptqueue");
                    if (tmp != null) {
                        somaxconn = tmp;
                    }
                } else {
                    somaxconn = tmp;
                }
            }
        }
    }
}

结论:

Linux下/proc/sys/net/core/somaxconn一定存在,所以backlog一定取得它的值,我参考prod机器的参数配置的65535,也就是不设置backlog的情况下,服务器运行缓存65535个全连接

5.ALLOCATOR和RCVBUF_ALLOCATOR

默认分配ByteBuffAllocator赋值如下: ByteBufUtil.java

static {
    //以io.netty.allocator.type为准,没有的话,安卓平台用非池化实现,其他用池化实现
    String allocType = SystemPropertyUtil.get(
            "io.netty.allocator.type", PlatformDependent.isAndroid() ? "unpooled" : "pooled");
    allocType = allocType.toLowerCase(Locale.US).trim();
    ByteBufAllocator alloc;
    if ("unpooled".equals(allocType)) {
        alloc = UnpooledByteBufAllocator.DEFAULT;
        logger.debug("-Dio.netty.allocator.type: {}", allocType);
    } else if ("pooled".equals(allocType)) {
        alloc = PooledByteBufAllocator.DEFAULT;
        logger.debug("-Dio.netty.allocator.type: {}", allocType);
    } else {
        //io.netty.allocator.type设置的不是"unpooled"或者"pooled",就用池化实现。
        alloc = PooledByteBufAllocator.DEFAULT;
        logger.debug("-Dio.netty.allocator.type: pooled (unknown: {})", allocType);
    }
    DEFAULT_ALLOCATOR = alloc;
}

RCVBUF_ALLOCATOR默认AdaptiveRecvByteBufAllocator

public class DefaultChannelConfig implements ChannelConfig {
    // ...
    public DefaultChannelConfig(Channel channel) {
        this(channel, new AdaptiveRecvByteBufAllocator());
    }
    // ...
}

四、Netty关闭

/**
 * Shortcut method for {@link #shutdownGracefully(long, long, TimeUnit)} with sensible default values.
 *
 * @return the {@link #terminationFuture()}
 */
Future<?> shutdownGracefully();
/**
 * Signals this executor that the caller wants the executor to be shut down.  Once this method is called,
 * {@link #isShuttingDown()} starts to return {@code true}, and the executor prepares to shut itself down.
 * Unlike {@link #shutdown()}, graceful shutdown ensures that no tasks are submitted for <i>'the quiet period'</i>
 * (usually a couple seconds) before it shuts itself down.  If a task is submitted during the quiet period,
 * it is guaranteed to be accepted and the quiet period will start over.
 *
 * @param quietPeriod the quiet period as described in the documentation
                     静默期:在此期间,仍然可以提交任务
 * @param timeout     the maximum amount of time to wait until the executor is {@linkplain #shutdown()}
 *                    regardless if a task was submitted during the quiet period
                     超时时间:等待所有任务执行完的最大时间
 * @param unit        the unit of {@code quietPeriod} and {@code timeout}
 *
 * @return the {@link #terminationFuture()}
 */
Future<?> shutdownGracefully(long quietPeriod, long timeout, TimeUnit unit);
// 抽象类中的实现
static final long DEFAULT_SHUTDOWN_QUIET_PERIOD = 2;
static final long DEFAULT_SHUTDOWN_TIMEOUT = 15;
@Override
public Future<?> shutdownGracefully() {
    return shutdownGracefully(DEFAULT_SHUTDOWN_QUIET_PERIOD, DEFAULT_SHUTDOWN_TIMEOUT, TimeUnit.SECONDS);
}

加载全部内容

相关教程
猜你喜欢
用户评论