Java数据业务逻辑JOOQ SPL
欧子有话说 人气:0引言
很多开源技术都可以在Java下实现以数据库为核心的业务逻辑,其中JOOQ的计算能力比Hibernate强,可移植性比MyBatis强,受到越来越多的关注。esProc SPL是新晋的数据计算语言,同样在计算能力和可移植性方面优势突出。下面对二者进行多方面的比较,从中找出开发效率更高的数据业务逻辑开发技术。JOOQ商业版主要支持了商业数据库和存储过程,不在此次讨论范围。
语言特征
编程风格
JOOQ支持完整的面向对象的编程风格,可以将多个对象(方法)组合起来,形成类似SQL的语法逻辑。JOOQ可以使用Java的Lambda表达式、函数调用接口和流程控制语法,理论上也支持面向函数和面向过程,但这些表达式\语法没有为JOOQ的结构化数据对象(Result)而设计,使用时还不够方便。
SPL支持面向对象、面向函数、面向过程的编程风格,并进行大幅简化。SPL有对象的概念,可以用点号访问属性并进行多步骤计算,但没有继承重载这些内容。SPL的Lambda表达式比SQL更加简单易用,函数调用接口和流程控制语法专为结构化数据对象(序表)而设计,使用更加方便。
运行模式
JOOQ是编译执行的Java代码,性能高一些,灵活性较差。但JOOQ本身没有计算能力,执行后只生成SQL语句,再交由数据库计算并返回结果,实际性能并不高,有些业务逻辑需要反复读写数据库,性能就更差了。SPL是解释型语言,编码更灵活,相同代码性能会差一点。但是,SPL有不依赖数据库的独立计算能力,无需反复读写数据库,内置大量时间复杂度更低的基础运算,计算性能经常能超过编译型语言。
外部类库
JOOQ可以引入其他任意的第三方Java类库,用来弥补自身的短板,比如利用Stream增加自己的独立计算能力,但这些类库没有为结构化数据对象而设计,提供的功能比较有限。SPL内置专业的数据处理函数,提供了大量开发效率更高、时间复杂度更低的基本运算,通常不需要外部Java类库,特殊情况可在自定义函数中调用。
IDE和调试
两者都有图形化IDE和完整的调试功能。JOOQ使用Java IDE,好处是更通用,缺点是没有为数据处理做优化,无法方便地观察结构化数据对象。SPL的IDE专为数据处理而设计,结构化数据对象呈现为表格形式,观察更加方便。
学习难度
JOOQ需要学习三种语法,SQL、通用Java、JOOQ。其中,SQL的语言能力要高于一般水平,才能转化为JOOQ语法;开发时主要使用JOOQ语法,难度不高,但转化过程较复杂;通用Java的语言能力可以低于一般水平。SPL的目标是简化Java甚至SQL的编码,无论入门学习还是深入开发,难度都不高。但涉及到高性能计算时需要学习较多特有的算法,难度也会提高。
代码量
SQL擅长结构化数据计算,语法较简练,代码量较低,但为了把SQL翻译成JOOQ,需要引入很多函数,存在过度封装的现象,实际代码量较大。JOOQ的流程控制要借助Java语法,但Java语法没有为结构化数据对象而设计,代码量也不低。
SPL的表达能力强于SQL,远强于JOOQ,可用更低的代码量实现结构化数据计算,SPL的流程处理语句专为结构化数据对象而设计,代码量低于Java。
结构化数据对象
结构化数据对象用于将数据库表对象化,是数据处理和业务逻辑开发的基础,专业的结构化数据对象可以方便地与数据库交换数据,支持丰富的计算函数,并简化流程处理的难度。
定义
JOOQ的结构化数据对象由记录和记录集合组成。记录对象的种类很多,第一类是Record对象,适合字段的数量、类型、名字都是动态生成的情况,Record虽然很灵活但面向对象的程度较低,用法比较麻烦,比如要通过getValue(M)来获得第M个字段。
第二类是Record[N]对象,N从1到22,比如Record3,适合字段类型和字段数量已知但不超过22个,而字段名是动态生成的情况,Record[N]灵活性差些但面向对象的程度稍高,用法方便些,比如可以通过valueM取得第M个字段。
第三类记录对象由JOOQ的代码工具根据库表结构生成,有几个表就有几个对象,字段的数量、类型、名字都和库表字段严格对应,比如OrdersRecord、EmployeesRecord,这种记录对象不灵活但面向对象的程度很高,用法也很方便,可以直接通过字段名取字段。
第三类对应库表,可称之为固定数据结构的记录对象,前两类通常来自对库表的查询计算,可称之为动态数据结构的记录对象。这三类比较常用,还有些不常用的记录对象,比如用户自定义记录类型UDT,这里就不展开说了。JOOQ的记录对象种类繁多,用法差异较大,增加了开发的难度,这主要因为业务逻辑存在大量动态数据结构,而Java是编译型语言,只擅长表达固定数据结构,如果硬要表达动态数据结构,就只能设计复杂的接口规则,或者根据字段数量预定义大量对象。
JOOQ记录集合的种类相对较少,常用的有原生对象Result,及其父类ArrayList,有时候也会用Stream。
SPL的结构化数据对象同样由记录(Record)和记录集合(序表)组成。SPL的记录对象只有一种,主要因为SPL是解释型语言,动态数据结构和固定数据结构表达起来同样方便,接口都很简单,没必要分成多个。此外,记录对象与单记录集合虽然本质不同,但业务意义相似,用起来容易混淆。SPL是解释型语言,可以通过灵活的接口使两者的外部用法保持一致,从而进一步提高易用性。相反,JOOQ是编译型语言,很难设计出这种灵活的接口,只能提供两类不同的接口,分别用来处理记录对象和单记录集合。
读数据库
JOOQ读取外部数据库表,生成固定记录集合:
java.sql.Connection conn = DriverManager.getConnection(url, userName, password); DSLContext context = DSL.using(conn, SQLDialect.MYSQL); Result<OrdersRecord> R1=context.select().from(ORDERS).fetchInto(ORDERS);
查询外部数据库表,生成动态记录集合:
Result<Record3<Integer,String,Double>>R2=context.select(ORDERS.SELLERID,ORDERS.CLIENT,ORDERS.AMOUNT).from(ORDERS).fetch();
动态记录集合的后续用法稍显麻烦,但可以兼容固定记录集合,下面文章中主要用动态记录集合。
SPL读取或查询外部数据库表,生成序表:
A | |
---|---|
1 | =conn=connect("mysql8") |
2 | =conn.query("select * from Orders") |
3 | =conn.query("select SellerID,Client,Amount from Orders") |
SPL不分固定记录集合或动态记录集合,生成方法一致,后续用法相同。
写数据库
将处理后的结构化数据对象持久化保存到数据库,JOOQ提供了三种函数,分别是insert、update、delete。修改记录r,再更新到数据库:
r.setValue(ORDERS.AMOUNT,r.getValue(ORDERS.AMOUNT).doubleValue()+100); r.update();
上面是单条记录的更新。要注意的是,数据库表必须有主键,自动生成的记录类才会继承UpdatableRecordImpl,只有继承UpdatableRecordImpl的记录类才支持update函数。
批量写入数据库是数据业务逻辑常见的场景,JOOQ也能实现。批量修改记录集合T,并更新到数据库:
R1.forEach(r->{ r.setValue(ORDERS.AMOUNT,r.getValue(ORDERS.AMOUNT).doubleValue()+100);}); R1.forEach(r->{ r.update();});
上面代码循环记录集合,手工更新每一条记录,从而实现对整体集合的更新。可以看到,JOOQ通过硬写代码实现批量写入,没有进行封装,很多时候不方便。如果一批记录既有修改又有新增还有删除,就必须区分三类记录,再用不同的函数循环写入,常见的办法是继承记录类,新加一个“标识”属性予以区分,或者保存一个未修改的原始记录集合T,将修改后的集合NT与原始集合进行手工比对。无论哪种方法,手工实现的过程都很麻烦。
SPL对数据库的写入进行了封装,只用一个update函数就实现单条和批量记录的新增、修改、删除,且支持混合更新。比如:原序表为T,经过增删改一系列处理后的序表为NT,将变化结果持久化到数据库的orders表:
conn.update(NT:T,orders)
访问字段
JOOQ读取单条记录的Client字段:
R1.get(0).getClient(); R1.get(0).get(ORDERS.CLIENT);
上面代码体现了JOOQ的核心优势:支持纯粹的面向对象的字段访问方式,不掺杂字符串、数字常量,或其他非Java的表达式,代码风格高度统一。遗憾之处在于,上面代码只适用于固定结构化数据对象。如果是查询计算生成的动态记录对象,就只能使用字符串字段名或数字序号访问字段:
R2.get(0).get("Client"); R2.get(0).get(1);
动态记录对象更加普遍,上面的字段访问方式不算纯粹的面向对象,代码风格不一致,不支持自动补全,编写时普遍麻烦。
SPL支持纯粹的面向对象的字段访问方式,不分固定或动态,编写时普遍方便:
T(1).Client
当然也支持字符串字段名或数字序号访问字段:
T(1).field(2) T(1).field("Client")
SPL在面向对象方面更加纯粹,风格更统一,编写代码更加方便。此外,SPL提供了很多JOOQ不支持的便利功能:默认字段名,可以用点号直接访问,比如取第2个字段:T(1).#2;取多个字段,返回集合的集合:T.([Client,Amount])
有序访问
有序访问是业务逻辑开发的难点之一,JOOQ的记录集合继承自Java的有序集合ArrayList,具备一定的有序访问能力,支持按下标取记录和按区间取记录:
R.get(3) R.subList(3,5);
再进一步的功能,就需要硬编码实现了,比如后3条:
Collections.reverse(R); R.subList(0,3);
至于按位置集合取记录、步进取记录等功能,硬编码就更麻烦了。
SPL序表同样是有序集合,提供了顺序相关的基本功能,比如按下标取、按区间取:
T(3) T.to(3,5)
序表是专业的结构化数据对象,许多顺序相关的高级功能JOOQ Result没有支持,序表则直接提供了,比如按倒数序号取记录,可以直接用负号表示:
T.m(-3) //倒数第3条 T.m(to(-3,-5)) //倒数区间
再比如按位置集合取记录、步进取记录:
T.m(1,3,5,7:10) //序号是1、3、5、7-10的记录 T.m(-1,-3,-5) //倒数第1,3,5条 T.step(2,1) //每2条取第1条(等价于奇数位置)
结构化数据计算
结构化数据计算能力是数据业务逻辑的核心功能,下面从简单到复杂选取几个常见题目,比较JOOQ和SPL的计算代码。
改名
//等价的SQL select SellerID eid,Amount amt from Orders //JOOQ context.select(ORDERS.SELLERID.as("eid"),ORDERS.AMOUNT.as("amt")).from(ORDERS).fetch() //SPL Orders.new(SellerID:EID, Amount:amt)
JOOQ的语法逻辑与SQL基本一致,可以达到用面向对象的方式模拟SQL的目的,这是JOOQ的重要优点。相应的也有缺点,JOOQ的一项运算需要多个函数的组合才能实现,每个函数都有自己的参数和语法规则,学习和编写难度较大。此外,很多函数里的字段名必须附带表名,即使单表计算也是如此,这说明JOOQ的语法不够专业,还有很大的改进空间。
SPL直接用面向对象的语法实现计算,一项运算对应一个函数,引用字段不必附带表名,语法更专业,代码更简短。
条件查询
//等价的SQL select * from Orders where ((SellerID=2 and Amount<3000) or (SellerID=3 and Amount>=2000 and Amount<5000)) and year(OrderDate)>2010 //JOOQ context.select().from(ORDERS) .where( ((ORDERS.SELLERID.equal(2).and(ORDERS.AMOUNT.lessThan(3000.0))) .or((ORDERS.SELLERID.equal(3).and(ORDERS.AMOUNT.greaterOrEqual(2000.0).and(ORDERS.AMOUNT.lessThan(5000.0)))))) .and(year(ORDERS.ORDERDATE).greaterThan(2012))) .fetch(); //SPL Orders.select( ((SellerID==2 && Amount<3000) || (SellerID==3 && Amount>=2000 && Amount<5000)) && year(OrderDate)>2010)
SQL的条件表达式本身足够简单,JOOQ虽然在模拟SQL,但对条件表达式进行了过度封装,函数数量过多,多层括号难阅读,远不如SQL好理解。SPL用一个函数实现条件查询,条件表达式简短易读。
分组汇总
//等价的SQL: select Client, extract(year from OrderDate) y,count(1) cnt from Orders group by Client, extract(year from OrderDate) having amt<20000 //JOOQ context.select(ORDERS.CLIENT,year(ORDERS.ORDERDATE).as("y"),sum(ORDERS.AMOUNT).as("amt"),count(one()).as("cnt")) .from(ORDERS) .groupBy(ORDERS.CLIENT,year(ORDERS.ORDERDATE)) .having(field("amt").lessThan(20000)).fetch(); //SPL Orders.groups(Client,year(OrderDate):y;sum(Amount):amt,count(1):cnt) .select(amt<20000)
为了模拟SQL,JOOQ使用了很多函数,规则很复杂,导致代码过长。SPL直接用面向对象的语法,规则简单,代码更短。
前面都是较简单计算,类似的计算还包括排序、去重、关联、集合交并差等计算,这里不再一一列举,总的来说,JOOQ进行简单计算时比SQL和SPL代码长,很多时候不易理解,开发效率较低。
各组前3名
//等价的SQL select * from (select *, row_number() over (partition by Client order by Amount) rn from Orders) T where rn<=3 //JOOQ WindowDefinition CA = name("CA").as(partitionBy(ORDERS.CLIENT).orderBy(ORDERS.AMOUNT)); context.select().from(select(ORDERS.ORDERID,ORDERS.CLIENT,ORDERS.SELLERID,ORDERS.AMOUNT,ORDERS.ORDERDATE,rowNumber().over(CA).as("rn")).from(ORDERS).window(CA) ).where(field("rn").lessOrEqual(3)).fetch(); //SPL Orders.group(Client).(~.top(3;Amount)).conj()
这道题目稍有难度,JOOQ虽然模拟出了SQL,但使用了很多函数,代码长度远超SQL,语法也越来越不像SQL,编写理解更加困难。SPL先对客户分组,再求各组(即~)的前3名,最后合并各组计算结果,不仅代码更简短,且更易理解。
JOOQ使用了窗口函数,只适合特定版本的数据库,比如MySQL8,不能通用于其他版本的数据库,要想在MySQL5下实现同样的计算,代码改动非常麻烦。SPL有独立计算能力,代码可通用于任何数据库。
某支股票最大连续上涨天数
JOOQ:
WindowDefinition woDay1 = name("woDay").as(orderBy(APPL.DAY)); Table<?>T0=table(select(APPL.DAY.as("DAY"),when(APPL.PRICE.greaterThan(lag(APPL.PRICE).over(woDay1)),0).otherwise(1).as("risingflag")).from(APPL).window(woDay1)).as("T0"); WindowDefinition woDay2 = name("woDay1").as(orderBy(T0.field("DAY"))); Table<?>T1=table(select(sum(T0.field("risingflag").cast(java.math.BigDecimal.class)).over(woDay2).as("norisingdays")).from(T0).window(woDay2)).as("T1"); Table<?>T2=table(select(count(one()).as("continuousdays")).from(T1).groupBy(T1.field("norisingdays"))).as("T2"); Result<?> result=context.select(max(T2.field("continuousdays"))).from(T2).fetch();
这个问题难度较高,需要综合运用多种简单计算。JOOQ很难直接表达连续上涨的概念,只能使用技巧变相实现,即通过累计不涨天数来计算连续上涨天数。具体是,先按时间顺序给每条记录打涨跌标记risingflag,如果下跌,则标为1,如果上涨,则标为0;再按时间顺序累计每条记录的不涨天数norisingdays,只有当前记录下跌时,这个数字才会变大,如果当前记录上涨,则这个数字不变;再按不涨天数norisingdays分组,求各组记录数,显然,连续下跌的一批记录的norisingdays不同,每条记录都会分到不同的组,该组计数为1,这个值不是解题目标,而连续上涨的一批记录的norisingdays相同,可以分到同一组,该组计数即连续上涨的天数,这个值是解题目标;最后用max函数求出最大的连续上涨天数。
JOOQ的编程过程是先写SQL,再翻译成JOOQ,对于简单计算来说,SQL比较好写,翻译也不会太难,但对于本题这种综合性计算来说,计算逻辑的技巧性比较强,SQL不好写,翻译的难度更大。此外,JOOQ表面上是方便调试的Java,但本质却是SQL,和SQL一样难以调试,这又为将来的维护工作埋下了大坑。
SPL代码简单多了:
APPL.sort(day).group@i(price<price[-1]).max(~.count())
这条SPL语句的计算逻辑和JOOQ是相同的,也是将连涨记录分到同一组中再求最大的组成员数,但表达起来要方便很多。group@i()表示遍历序表,如果符合条件则开始新的一组(并使之前的记录分到同一组),price<price[-1]这个条件表示股价下跌,则之前股价上涨的记录会分到同一组。[-1]表示上一条,是相对位置的表示方法,price[-1]表示上一个交易日的股价,比整体移行(lag.over)更直观。
相对位置属于有序计算,SPL是专业的结构化计算语言,支持有序计算,代码因此更简单。除了有序集合,SPL还可以简化多种复杂计算,包括多步骤计算、集合计算、复杂的关联计算。相反,这几类计算都是JOOQ不擅长的,通常要通过特殊技巧实现,代码很难写。
SPL函数选项和层次参数
值得一提的是,为了进一步提高开发效率,SPL还提供了独特的函数语法。有大量功能类似的函数时,JOOQ只能用不同的名字或者参数进行区分,使用不太方便。而SPL提供了非常独特的函数选项,使功能相似的函数可以共用一个函数名,只用函数选项区分差别。比如,select函数的基本功能是过滤,如果只过滤出符合条件的第1条记录,可使用选项@1:
T.select@1(Amount>1000)
对有序数据用二分法进行快速过滤,使用@b:
T.select@b(Amount>1000)
函数选项还可以组合搭配,比如:
Orders.select@1b(Amount>1000)
有些函数的参数很复杂,可能会分成多层。JOOQ对此并没有特别的语法方案,只能拆成多个函数互相嵌套,尽力模拟成SQL语法,导致代码冗长繁琐。而SPL创造性地发明了层次参数简化了复杂参数的表达,通过分号、逗号、冒号自高而低将参数分为三层。比如关联两个表:
join(Orders:o,SellerId ; Employees:e,EId)
流程处理
JOOQ支持部分存储过程语法,包括循环语句和判断语句,但这属于商业版功能,且权限要求高、安全隐患大,难以移植,一般很少用到。除了存储过程,JOOQ还可以利用Java实现流程处理,对数据库没有权限要求,安全隐患小,且可无缝移植。比如,根据规则计算奖金:
Orders.forEach(r->{ Double amount=r.getValue(ORDERS.AMOUNT); if (amount>10000) { r.setValue(ORDERS.BONUS), amount * 0.05); }else if(amount>=5000 && amount<10000){ r.setValue(ORDERS.BONUS),amount*0.03); }else if(amount>=2000 && amount<5000){ r.setValue(ORDERS.BONUS),amount*0.02); } });
forEach循环函数针对JOOQ的结构化数据对象进行了优化,可以通过Lambda表达式简化循环结构的定义,可以方便地处理集合对象的每个成员(代码中的循环变量r)。forEach函数配合Lambda语法,整体代码要比传统循环语句简单些。但也应该注意到,forEach函数里使用字段需要附带循环变量名,对单表计算来说是多余的,同样使用Lambda语法的SQL就可以省略变量名。此外,定义循环变量名也是多余的,SQL就不用定义。这些缺点都说明JOOQ在流程处理方面还不够专业,代码还有很大的优化空间。
SPL也有针对结构化数据对象进行优化的循环函数,直接用括号表示。同样根据规则计算奖金:
Orders.(Bonus=if(Amount>10000,Amount*0.05, if(Amount>5000 && Amount<10000, Amount*0.03, if(Amount>=2000 && Amount<5000, Amount*0.02) )))
SPL的循环函数同样支持Lambda表达式,而且接口更简单,不必定义循环变量,使用字段时不必引用变量名,比JOOQ更方便,专业性也更强。除了循环函数,SPL还有更多专业的流程处理功能,比如:每轮循环取一批而不是一条记录;某字段值变化时循环一轮。
SPL专业的流程处理功能,配合专业的结构化数据对象和结构化数据计算能力,可大幅提高数据业务逻辑的开发效率。一个完整的例子:计算出奖金,并向数据库插入新记录。JOOQ需要生成多个文件,编写大段代码才能实现,SPL就简单多了:
A | B | C | |
---|---|---|---|
1 | =db=connect@e("dbName") | /连接数据库,开启事务 | |
2 | =db.query@1("select sum(Amount) from sales where sellerID=? and year(OrderDate)=? and month(OrderDate)=?", p_SellerID,year(now()),month(now())) | /查询当月销售额 | |
3 | =if(A2>=10000 :200, A2<10000 && A2>=2000 :100, 0) | /本月累计奖金 | |
4 | =p_Amount*0.05 | /本单固定奖金 | |
5 | =BONUS=A3+A4 | /总奖金 | |
6 | =create(ORDERID,CLIENT,SELLERID,AMOUNT,BONUS,ORDERDATE) | /创建订单的数据结构 | |
7 | =A6.record([p_OrderID,p_Client,p_SellerID,p_Amount,BONUS,date(now())]) | /生成一条订单记录 | |
8 | >db.update@ik(A7,sales;ORDERID) | /尝试写入库表 | |
9 | =db.error() | /入库结果 | |
10 | if A9==0 | >A1.commit() | /成功,则提交事务 |
11 | else | >A1.rollback() | /失败,则回滚事务 |
12 | >db.close() | /关闭数据库连接 | |
13 | return A9 | /返回入库结果 |
利用SPL的流程处理语句,可以实现存储过程的所有能力,包括游标的循环和判断。SPL不依赖数据库,不需要数据库权限,没有安全隐患,相当于库外的存储过程,同时,这些功能也都是开源的。
应用结构
Java集成
JOOQ本身就是Java,可被其他Java代码直接调用。
SPL是基于JVM的数据计算语言,提供了易用的JDBC接口,可被JAVA代码无缝集成。比如,将业务逻辑代码存为脚本文件,在JAVA中以存储过程的形式调用文件名:
Class.forName("com.esproc.jdbc.InternalDriver"); Connection connection =DriverManager.getConnection("jdbc:esproc:local://"); Statement statement = connection.createStatement(); ResultSet result = statement.executeQuery("call genBonus()");
热部署
JOOQ(Java)是编译型语言,不支持热部署,修改代码后需要重新编译并重启整个应用,加大了维护难度,降低了系统稳定性。
SPL是解释型语言,代码以脚本文件的形式外置于JAVA,支持热部署,修改后不必编译,也不必重启应用。由于SPL代码不依赖JAVA,业务逻辑和前端代码物理分离,耦合性也更低。
代码移植
JOOQ的部分代码可以移植,比不可移植的MyBatis方便。比如业务逻辑中常用于分页的limit(M).offset(N),在Oracle11g数据库下会被翻译为rownum子查询;如果数据库改为MSSQL2012,只要重新生成并部署实体类,不必修改业务逻辑,同样的代码就会翻译成offset next语句。
能够移植的代码毕竟是少数,大部分JOOQ代码都是不可以移植的,比如前面例子里的窗口函数。移植时需要读懂原JOOQ代码,反翻译成原SQL,再改成新SQL,最后翻译成新JOOQ代码,过程较繁难度较高。业务逻辑普遍具有复杂性,移植工作就更难了。
SPL具有独立计算能力,不必借用SQL,凭借丰富的内置函数库就能实现复杂的结构化数据计算,计算代码可在数据库间无缝移植。在数据库取数代码中,SPL也要执行方言SQL生成序表,虽然取数SQL比较简单,手工移植不难,但仍有一定工作量,为了使取数代码便于移植,SPL专门提供了不依赖特定数据库的通用SQL,可在主流数据库间无缝移植。
通过多方面的比较可知:JOOQ可以进行较简单的查询统计,但对于较复杂的业务逻辑开发就显得比较繁琐,尤其是有序计算、多步骤计算、集合计算、复杂的关联查询,存在翻译SQL的工作量大,代码冗长,难以修改,难以移植等问题。SPL语法简练、表达效率高、代码移植方便,结构化数据对象更专业,函数更丰富且计算能力更强,流程处理更方便,开发效率远高于JOOQ。
加载全部内容