亲宝软件园·资讯

展开

python bisect模块

独影月下酌酒 人气:0

1.bisect模块概述

bisect是python的内置模块, 用于有序序列的插入和查找。 插入的数据不会影响列表的排序, 但是原有列表需要是有序的, 并且不能是倒序.

Bisect模块提供的函数有:

2.bisect模块的函数详解

2.1 bisect.bisect*()方法

在有序数组a中[lo,hi]区间内查找x插入的位置,返回的是索引值。如果a中有跟x相同的元素,则x插入的位置是左边,key指定了一个单参数的方法,该方法的返回值作为与k比较的基准。

值得注意的是,key参数是3.10版本以后才添加的功能

# bisect_left Vs. bisect (bisect_right)
import bisect

nums = [1, 2, 2, 4]
i, j = bisect.bisect_left(nums, 2), bisect.bisect(nums, 2)
print(i)  # 输出1
print(j)  # 输出3

可见,针对上面给出的数组,想要插入2,使用bisect_left返回的索引值是1,使用bisect(bisect_right)返回的索引值是3。如果指定了lo和hi的话,那么返回的就是在这个范围内的索引。如下面的例子所示。

# 指定lo和hi
import bisect

nums = [1, 2, 2, 2, 2, 4]
i = bisect.bisect_left(nums, 2, 3)
print(i)  # 输出为3

如果不指定lo=3的话,返回的索引应该是1。指定lo=3后,返回的索引为3。

关键字key指定了一个方法,这个方法会接受当前数组中的中间值mid(因为二分查找就是从中间值开始的)作为其参数,然后返回一个值val,val用于跟x比较。

# 指定key值
import bisect

nums = [1, 2, 3, 4, 6, 8]

def divide(mid):
    print('mid: ' + str(mid))
    return mid // 2

i = bisect.bisect_left(nums, 5, key=divide)
print(i)

上面的例子中定义了一个divide方法。那么bisect_left方法的执行顺序是这样的:

2.2 bisect.insort*()方法

# bisect.insort_left
import bisect

nums = [1, 2, 3, 4, 6, 8]
bisect.insort_left(nums, 5)
print(nums)
# [1, 2, 3, 4, 5, 6, 8]

值得注意的是,insort方法中的key和bisect方法中的key指定的方法针对的对象是不同的

# bisect.insort_left with key
import bisect

nums = [1, 2, 3, 4, 6, 8]
def divide(mid):
    print('mid: ' + str(mid))
    return mid // 2
bisect.insort_left(nums, 5, key=divide)

可见,key指定的方法的参数是针对x的。也就是说insort_left方法的执行顺序是这样的:

3.python中的二分查找

3.1 标准的二分查找

class BinarySearch:
    # 标准的二分查找,找不到返回-1
    def binsearch(self, nums, target):
        lo, hi = 0, len(nums) - 1
        while lo <= hi:
            mid = lo + (hi - lo) // 2
            if nums[mid] == target:
                return mid
            elif nums[mid] > target:
                hi = mid - 1
            else:  # nums[mid] < target:
                lo = mid + 1
        return -1

3.2 查找第一个>=target的元素索引

class BinarySearch:
    # 查找第一个>=target的元素索引,找不到返回数组长度
    def lowerbound(self, nums, target):
        lo, hi = 0, len(nums) - 1
        pos = len(nums)  # 找不到
        while lo < hi:
            mid = lo + (hi - lo) // 2
            if nums[mid] >= target:
                hi = mid
            else:  # nums[mid] < target:
                lo = mid + 1
        if nums[lo] >= target:  # lo:要找的元素索引
            pos = lo
        return pos

3.3 查找第一个>target的元素索引

class BinarySearch:
    # 查找第一个>target的元素索引,找不到返回数组长度
    def upperbound(self, nums, target):
        lo, hi = 0, len(nums) - 1
        pos = len(nums)  # 找不到
        while lo < hi:
            mid = lo + (hi - lo) // 2
            if nums[mid] > target:
                hi = mid
            else:  # nums[mid] <= target:
                lo = mid + 1
        if nums[lo] > target:  # lo:要找的元素索引
            pos = lo
        return pos

4.二分查找的变形与 bisect 模块的关系

加载全部内容

相关教程
猜你喜欢
用户评论