python生成 数据
IT之一小 人气:0前言 :
上一篇文章:如何使用python生成大量数据写入es数据库并查询操作
模拟学生个人信息写入es数据库,包括姓名、性别、年龄、特点、科目、成绩,创建时间。
方案一
在写入数据时未提前创建索引mapping,而是每插入一条数据都包含了索引的信息。
示例代码:【多线程写入数据】【一次性写入10000*1000条数据】 【本人亲测耗时3266秒】
from elasticsearch import Elasticsearch from elasticsearch import helpers from datetime import datetime from queue import Queue import random import time import threading es = Elasticsearch(hosts='http://127.0.0.1:9200') # print(es) names = ['刘一', '陈二', '张三', '李四', '王五', '赵六', '孙七', '周八', '吴九', '郑十'] sexs = ['男', '女'] age = [25, 28, 29, 32, 31, 26, 27, 30] character = ['自信但不自负,不以自我为中心', '努力、积极、乐观、拼搏是我的人生信条', '抗压能力强,能够快速适应周围环境', '敢做敢拼,脚踏实地;做事认真负责,责任心强', '爱好所学专业,乐于学习新知识;对工作有责任心;踏实,热情,对生活充满激情', '主动性强,自学能力强,具有团队合作意识,有一定组织能力', '忠实诚信,讲原则,说到做到,决不推卸责任', '有自制力,做事情始终坚持有始有终,从不半途而废', '肯学习,有问题不逃避,愿意虚心向他人学习', '愿意以谦虚态度赞扬接纳优越者,权威者', '会用100%的热情和精力投入到工作中;平易近人', '为人诚恳,性格开朗,积极进取,适应力强、勤奋好学、脚踏实地', '有较强的团队精神,工作积极进取,态度认真'] subjects = ['语文', '数学', '英语', '生物', '地理'] grades = [85, 77, 96, 74, 85, 69, 84, 59, 67, 69, 86, 96, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86] create_time = datetime.now().strftime('%Y-%m-%d %H:%M:%S') def save_to_es(num): """ 批量写入数据到es数据库 :param num: :return: """ start = time.time() action = [ { "_index": "personal_info_10000000", "_type": "doc", "_id": i, "_source": { "id": i, "name": random.choice(names), "sex": random.choice(sexs), "age": random.choice(age), "character": random.choice(character), "subject": random.choice(subjects), "grade": random.choice(grades), "create_time": create_time } } for i in range(10000 * num, 10000 * num + 10000) ] helpers.bulk(es, action) end = time.time() print(f"{num}耗时{end - start}s!") def run(): global queue while queue.qsize() > 0: num = queue.get() print(num) save_to_es(num) if __name__ == '__main__': start = time.time() queue = Queue() # 序号数据进队列 for num in range(1000): queue.put(num) # 多线程执行程序 consumer_lst = [] for _ in range(10): thread = threading.Thread(target=run) thread.start() consumer_lst.append(thread) for consumer in consumer_lst: consumer.join() end = time.time() print('程序执行完毕!花费时间:', end - start)
运行结果:
自动创建的索引mapping:
GET personal_info_10000000/_mapping { "personal_info_10000000" : { "mappings" : { "properties" : { "age" : { "type" : "long" }, "character" : { "type" : "text", "fields" : { "keyword" : { "type" : "keyword", "ignore_above" : 256 } } }, "create_time" : { "type" : "text", "fields" : { "keyword" : { "type" : "keyword", "ignore_above" : 256 } } }, "grade" : { "type" : "long" }, "id" : { "type" : "long" }, "name" : { "type" : "text", "fields" : { "keyword" : { "type" : "keyword", "ignore_above" : 256 } } }, "sex" : { "type" : "text", "fields" : { "keyword" : { "type" : "keyword", "ignore_above" : 256 } } }, "subject" : { "type" : "text", "fields" : { "keyword" : { "type" : "keyword", "ignore_above" : 256 } } } } } } }
方案二
1.顺序插入5000000条数据
先创建索引personal_info_5000000,确定好mapping后,再插入数据。
新建索引并设置mapping信息:
PUT personal_info_5000000 { "settings": { "number_of_shards": 3, "number_of_replicas": 1 }, "mappings": { "properties": { "id": { "type": "long" }, "name": { "type": "text", "fields": { "keyword": { "type": "keyword", "ignore_above": 32 } } }, "sex": { "type": "text", "fields": { "keyword": { "type": "keyword", "ignore_above": 8 } } }, "age": { "type": "long" }, "character": { "type": "text", "analyzer": "ik_smart", "fields": { "keyword": { "type": "keyword", "ignore_above": 256 } } }, "subject": { "type": "text", "fields": { "keyword": { "type": "keyword", "ignore_above": 256 } } }, "grade": { "type": "long" }, "create_time": { "type": "date", "format": "yyyy-MM-dd HH:mm:ss||yyyy-MM-dd||epoch_millis" } } } }
查看新建索引信息:
GET personal_info_5000000 { "personal_info_5000000" : { "aliases" : { }, "mappings" : { "properties" : { "age" : { "type" : "long" }, "character" : { "type" : "text", "fields" : { "keyword" : { "type" : "keyword", "ignore_above" : 256 } }, "analyzer" : "ik_smart" }, "create_time" : { "type" : "date", "format" : "yyyy-MM-dd HH:mm:ss||yyyy-MM-dd||epoch_millis" }, "grade" : { "type" : "long" }, "id" : { "type" : "long" }, "name" : { "type" : "text", "fields" : { "keyword" : { "type" : "keyword", "ignore_above" : 32 } } }, "sex" : { "type" : "text", "fields" : { "keyword" : { "type" : "keyword", "ignore_above" : 8 } } }, "subject" : { "type" : "text", "fields" : { "keyword" : { "type" : "keyword", "ignore_above" : 256 } } } } }, "settings" : { "index" : { "routing" : { "allocation" : { "include" : { "_tier_preference" : "data_content" } } }, "number_of_shards" : "3", "provided_name" : "personal_info_50000000", "creation_date" : "1663471072176", "number_of_replicas" : "1", "uuid" : "5DfmfUhUTJeGk1k4XnN-lQ", "version" : { "created" : "7170699" } } } } }
开始插入数据:
示例代码: 【单线程写入数据】【一次性写入10000*500条数据】 【本人亲测耗时7916秒】
from elasticsearch import Elasticsearch from datetime import datetime from queue import Queue import random import time import threading es = Elasticsearch(hosts='http://127.0.0.1:9200') # print(es) names = ['刘一', '陈二', '张三', '李四', '王五', '赵六', '孙七', '周八', '吴九', '郑十'] sexs = ['男', '女'] age = [25, 28, 29, 32, 31, 26, 27, 30] character = ['自信但不自负,不以自我为中心', '努力、积极、乐观、拼搏是我的人生信条', '抗压能力强,能够快速适应周围环境', '敢做敢拼,脚踏实地;做事认真负责,责任心强', '爱好所学专业,乐于学习新知识;对工作有责任心;踏实,热情,对生活充满激情', '主动性强,自学能力强,具有团队合作意识,有一定组织能力', '忠实诚信,讲原则,说到做到,决不推卸责任', '有自制力,做事情始终坚持有始有终,从不半途而废', '肯学习,有问题不逃避,愿意虚心向他人学习', '愿意以谦虚态度赞扬接纳优越者,权威者', '会用100%的热情和精力投入到工作中;平易近人', '为人诚恳,性格开朗,积极进取,适应力强、勤奋好学、脚踏实地', '有较强的团队精神,工作积极进取,态度认真'] subjects = ['语文', '数学', '英语', '生物', '地理'] grades = [85, 77, 96, 74, 85, 69, 84, 59, 67, 69, 86, 96, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86] create_time = datetime.now().strftime('%Y-%m-%d %H:%M:%S') # 添加程序耗时的功能 def timer(func): def wrapper(*args, **kwargs): start = time.time() res = func(*args, **kwargs) end = time.time() print('id{}共耗时约 {:.2f} 秒'.format(*args, end - start)) return res return wrapper @timer def save_to_es(num): """ 顺序写入数据到es数据库 :param num: :return: """ body = { "id": num, "name": random.choice(names), "sex": random.choice(sexs), "age": random.choice(age), "character": random.choice(character), "subject": random.choice(subjects), "grade": random.choice(grades), "create_time": create_time } # 此时若索引不存在时会新建 es.index(index="personal_info_5000000", id=num, doc_type="_doc", document=body) def run(): global queue while queue.qsize() > 0: num = queue.get() print(num) save_to_es(num) if __name__ == '__main__': start = time.time() queue = Queue() # 序号数据进队列 for num in range(5000000): queue.put(num) # 多线程执行程序 consumer_lst = [] for _ in range(10): thread = threading.Thread(target=run) thread.start() consumer_lst.append(thread) for consumer in consumer_lst: consumer.join() end = time.time() print('程序执行完毕!花费时间:', end - start)
运行结果:
2.批量插入5000000条数据
先创建索引personal_info_5000000_v2,确定好mapping后,再插入数据。
新建索引并设置mapping信息:
PUT personal_info_5000000_v2 { "settings": { "number_of_shards": 3, "number_of_replicas": 1 }, "mappings": { "properties": { "id": { "type": "long" }, "name": { "type": "text", "fields": { "keyword": { "type": "keyword", "ignore_above": 32 } } }, "sex": { "type": "text", "fields": { "keyword": { "type": "keyword", "ignore_above": 8 } } }, "age": { "type": "long" }, "character": { "type": "text", "analyzer": "ik_smart", "fields": { "keyword": { "type": "keyword", "ignore_above": 256 } } }, "subject": { "type": "text", "fields": { "keyword": { "type": "keyword", "ignore_above": 256 } } }, "grade": { "type": "long" }, "create_time": { "type": "date", "format": "yyyy-MM-dd HH:mm:ss||yyyy-MM-dd||epoch_millis" } } } }
查看新建索引信息:
GET personal_info_5000000_v2 { "personal_info_5000000_v2" : { "aliases" : { }, "mappings" : { "properties" : { "age" : { "type" : "long" }, "character" : { "type" : "text", "fields" : { "keyword" : { "type" : "keyword", "ignore_above" : 256 } }, "analyzer" : "ik_smart" }, "create_time" : { "type" : "date", "format" : "yyyy-MM-dd HH:mm:ss||yyyy-MM-dd||epoch_millis" }, "grade" : { "type" : "long" }, "id" : { "type" : "long" }, "name" : { "type" : "text", "fields" : { "keyword" : { "type" : "keyword", "ignore_above" : 32 } } }, "sex" : { "type" : "text", "fields" : { "keyword" : { "type" : "keyword", "ignore_above" : 8 } } }, "subject" : { "type" : "text", "fields" : { "keyword" : { "type" : "keyword", "ignore_above" : 256 } } } } }, "settings" : { "index" : { "routing" : { "allocation" : { "include" : { "_tier_preference" : "data_content" } } }, "number_of_shards" : "3", "provided_name" : "personal_info_5000000_v2", "creation_date" : "1663485323617", "number_of_replicas" : "1", "uuid" : "XBPaDn_gREmAoJmdRyBMAA", "version" : { "created" : "7170699" } } } } }
批量插入数据:
通过elasticsearch模块导入helper,通过helper.bulk来批量处理大量的数据。首先将所有的数据定义成字典形式,各字段含义如下:
- _index对应索引名称,并且该索引必须存在。
- _type对应类型名称。
- _source对应的字典内,每一篇文档的字段和值,可有有多个字段。
示例代码: 【程序中途异常,写入4714000条数据】
from elasticsearch import Elasticsearch from elasticsearch import helpers from datetime import datetime from queue import Queue import random import time import threading es = Elasticsearch(hosts='http://127.0.0.1:9200') # print(es) names = ['刘一', '陈二', '张三', '李四', '王五', '赵六', '孙七', '周八', '吴九', '郑十'] sexs = ['男', '女'] age = [25, 28, 29, 32, 31, 26, 27, 30] character = ['自信但不自负,不以自我为中心', '努力、积极、乐观、拼搏是我的人生信条', '抗压能力强,能够快速适应周围环境', '敢做敢拼,脚踏实地;做事认真负责,责任心强', '爱好所学专业,乐于学习新知识;对工作有责任心;踏实,热情,对生活充满激情', '主动性强,自学能力强,具有团队合作意识,有一定组织能力', '忠实诚信,讲原则,说到做到,决不推卸责任', '有自制力,做事情始终坚持有始有终,从不半途而废', '肯学习,有问题不逃避,愿意虚心向他人学习', '愿意以谦虚态度赞扬接纳优越者,权威者', '会用100%的热情和精力投入到工作中;平易近人', '为人诚恳,性格开朗,积极进取,适应力强、勤奋好学、脚踏实地', '有较强的团队精神,工作积极进取,态度认真'] subjects = ['语文', '数学', '英语', '生物', '地理'] grades = [85, 77, 96, 74, 85, 69, 84, 59, 67, 69, 86, 96, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86] create_time = datetime.now().strftime('%Y-%m-%d %H:%M:%S') # 添加程序耗时的功能 def timer(func): def wrapper(*args, **kwargs): start = time.time() res = func(*args, **kwargs) end = time.time() print('id{}共耗时约 {:.2f} 秒'.format(*args, end - start)) return res return wrapper @timer def save_to_es(num): """ 批量写入数据到es数据库 :param num: :return: """ action = [ { "_index": "personal_info_5000000_v2", "_type": "_doc", "_id": i, "_source": { "id": i, "name": random.choice(names), "sex": random.choice(sexs), "age": random.choice(age), "character": random.choice(character), "subject": random.choice(subjects), "grade": random.choice(grades), "create_time": create_time } } for i in range(10000 * num, 10000 * num + 10000) ] helpers.bulk(es, action) def run(): global queue while queue.qsize() > 0: num = queue.get() print(num) save_to_es(num) if __name__ == '__main__': start = time.time() queue = Queue() # 序号数据进队列 for num in range(500): queue.put(num) # 多线程执行程序 consumer_lst = [] for _ in range(10): thread = threading.Thread(target=run) thread.start() consumer_lst.append(thread) for consumer in consumer_lst: consumer.join() end = time.time() print('程序执行完毕!花费时间:', end - start)
运行结果:
3.批量插入50000000条数据
先创建索引personal_info_5000000_v2,确定好mapping后,再插入数据。
此过程是在上面批量插入的前提下进行优化,采用python生成器。
建立索引和mapping同上,直接上代码:
示例代码: 【程序中途异常,写入3688000条数据】
from elasticsearch import Elasticsearch from elasticsearch import helpers from datetime import datetime from queue import Queue import random import time import threading es = Elasticsearch(hosts='http://127.0.0.1:9200') # print(es) names = ['刘一', '陈二', '张三', '李四', '王五', '赵六', '孙七', '周八', '吴九', '郑十'] sexs = ['男', '女'] age = [25, 28, 29, 32, 31, 26, 27, 30] character = ['自信但不自负,不以自我为中心', '努力、积极、乐观、拼搏是我的人生信条', '抗压能力强,能够快速适应周围环境', '敢做敢拼,脚踏实地;做事认真负责,责任心强', '爱好所学专业,乐于学习新知识;对工作有责任心;踏实,热情,对生活充满激情', '主动性强,自学能力强,具有团队合作意识,有一定组织能力', '忠实诚信,讲原则,说到做到,决不推卸责任', '有自制力,做事情始终坚持有始有终,从不半途而废', '肯学习,有问题不逃避,愿意虚心向他人学习', '愿意以谦虚态度赞扬接纳优越者,权威者', '会用100%的热情和精力投入到工作中;平易近人', '为人诚恳,性格开朗,积极进取,适应力强、勤奋好学、脚踏实地', '有较强的团队精神,工作积极进取,态度认真'] subjects = ['语文', '数学', '英语', '生物', '地理'] grades = [85, 77, 96, 74, 85, 69, 84, 59, 67, 69, 86, 96, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86] create_time = datetime.now().strftime('%Y-%m-%d %H:%M:%S') # 添加程序耗时的功能 def timer(func): def wrapper(*args, **kwargs): start = time.time() res = func(*args, **kwargs) end = time.time() print('id{}共耗时约 {:.2f} 秒'.format(*args, end - start)) return res return wrapper @timer def save_to_es(num): """ 使用生成器批量写入数据到es数据库 :param num: :return: """ action = ( { "_index": "personal_info_5000000_v3", "_type": "_doc", "_id": i, "_source": { "id": i, "name": random.choice(names), "sex": random.choice(sexs), "age": random.choice(age), "character": random.choice(character), "subject": random.choice(subjects), "grade": random.choice(grades), "create_time": create_time } } for i in range(10000 * num, 10000 * num + 10000) ) helpers.bulk(es, action) def run(): global queue while queue.qsize() > 0: num = queue.get() print(num) save_to_es(num) if __name__ == '__main__': start = time.time() queue = Queue() # 序号数据进队列 for num in range(500): queue.put(num) # 多线程执行程序 consumer_lst = [] for _ in range(10): thread = threading.Thread(target=run) thread.start() consumer_lst.append(thread) for consumer in consumer_lst: consumer.join() end = time.time() print('程序执行完毕!花费时间:', end - start)
运行结果:
加载全部内容