Python计算AUC
strive_1106 人气:0介绍
AUC(Area Under Curve)被定义为ROC曲线下与坐标轴围成的面积,显然这个面积的数值不会大于1。又由于ROC曲线一般都处于y=x这条直线的上方,所以AUC的取值范围在0.5和1之间。AUC越接近1.0,检测方法真实性越高;等于0.5时,则真实性最低,无应用价值。
auc计算方式:参考Python实现计算AUC的示例代码
实现代码
import numpy as np from sklearn.metrics import roc_auc_score y_true = [1,1,0,0,1,1,0] y_pred = [0.8,0.7,0.5,0.5,0.5,0.5,0.3] print(roc_auc_score(y_true, y_pred)) # 下面实现的是方法1 # https://blog.csdn.net/lieyingkub99/article/details/81266664?utm_medium=distribute.pc_relevant.none-task-blog-title-1&spm=1001.2101.3001.4242 def cal_auc1(y_true, y_pred): n_bins = 10 postive_len = sum(y_true) # M正样本个数 negative_len = len(y_true) - postive_len # N负样本个数 total_case = postive_len * negative_len # M * N样本对数 pos_histogram = [0 for _ in range(n_bins)] # 保存每一个概率值下的正样本个数 neg_histogram = [0 for _ in range(n_bins)] # 保存每一个概率值下的负样本个数 bin_width = 1.0 / n_bins for i in range(len(y_true)): nth_bin = int(y_pred[i] / bin_width) # 概率值转化为整数下标 if y_true[i] == 1: pos_histogram[nth_bin] += 1 else: neg_histogram[nth_bin] += 1 print(pos_histogram) print(neg_histogram) accumulated_neg = 0 satisfied_pair = 0 for i in range(n_bins): satisfied_pair += (pos_histogram[i] * accumulated_neg + pos_histogram[i] * neg_histogram[i] * 0.5) print(pos_histogram[i], neg_histogram[i], accumulated_neg, satisfied_pair) accumulated_neg += neg_histogram[i] return satisfied_pair / float(total_case) print(cal_auc1(y_true, y_pred)) # 下面实现的是方法2 # https://blog.csdn.net/lieyingkub99/article/details/81266664?utm_medium=distribute.pc_relevant.none-task-blog-title-1&spm=1001.2101.3001.4242 def cal_auc2(y_true, y_pred): n_bins = 10 postive_len = sum(y_true) # M正样本个数 negative_len = len(y_true) - postive_len # N负样本个数 total_case = postive_len * negative_len # M * N样本对数 prob_rank = [0 for _ in range(n_bins)] # 保存每一个概率值的rank prob_num = [0 for _ in range(n_bins)] # 保存每一个概率值出现的次数 bin_width = 1.0 / n_bins raw_arr = [] for i in range(len(y_true)): raw_arr.append([y_pred[i], y_true[i]]) arr = sorted(raw_arr, key=lambda d: d[0]) # 按概率由低到高排序 for i in range(len(arr)): nth_bin = int(arr[i][0] / bin_width) # 概率值转化为整数下标 prob_rank[nth_bin] = prob_rank[nth_bin] + i + 1 prob_num[nth_bin] = prob_num[nth_bin] + 1 satisfied_pair = 0 for i in range(len(arr)): if arr[i][1] == 1: nth_bin = int(arr[i][0] / bin_width) # 概率值转化为整数下标 satisfied_pair = satisfied_pair + prob_rank[nth_bin] / prob_num[nth_bin] return (satisfied_pair - postive_len * (postive_len + 1) / 2 ) / total_case print(cal_auc2(y_true, y_pred)) # 根据roc曲线,找不同点算下面积, 需要点足够多 def cal_auc3(y_true, y_pred): """Summary Args: raw_arr (TYPE): Description Returns: TYPE: Description """ raw_arr = [] for i in range(len(y_true)): raw_arr.append([y_pred[i], y_true[i]]) print(raw_arr) arr = sorted(raw_arr, key=lambda d:d[0], reverse=True) pos, neg = 0., 0. for record in arr: if record[1] == 1.: pos += 1 else: neg += 1 fp, tp = 0., 0. xy_arr = [] for record in arr: if record[1] == 1.: tp += 1 else: fp += 1 xy_arr.append([fp/neg, tp/pos]) print(xy_arr) auc = 0. prev_x = 0. prev_y = 0. for x, y in xy_arr: if x != prev_x: auc += ((x - prev_x) * (y + prev_y) / 2.) prev_x = x prev_y = y print(auc) import numpy as np from sklearn.metrics import roc_auc_score y_true = [1, 1, 0, 0, 1, 1, 0] y_pred = [0.8, 0.7, 0.5, 0.5, 0.5, 0.5, 0.3] print(roc_auc_score(y_true, y_pred))
方法补充
下面是小编为大家找到的另外三个计算AUC的代码,会输出三种方法各自的auc,以及通过面积计算AUC时的ROC曲线。
在通过面积计算AUC的方法中,没有遍历数据的预测概率作为分类阈值,而是对[0,1]区间等分得到一系列阈值。
# AUC的计算 import numpy as np import matplotlib.pyplot as plt for e in range(3): print("\nRound: ", e+1) num = 1000 auc1 = auc2 = auc3 = 0. # 准备数据 pred_prob = list(np.random.uniform(low=0,high=1, size=[num])) labels = [int(prob>0.5) for prob in list(np.random.uniform(low=0,high=1, size=[num]))] # 检查数据 # print("pred_prob:\n", pred_prob) # print("labels:\n", labels) # 方法一,面积加和 roc_point = [] for i in range(num): i = pred_prob[i] TP = 0 # 真阳样本数 FP = 0 # 假阳样本数 TP_rate = 0. # 真阳率 FP_rate = 0. # 假阳率 pos_num = 0 # 预测真样本数 # 计数过程 for ind, prob in enumerate(pred_prob): if prob>i: pos_num += 1 if prob>i and labels[ind]>0.5: TP+=1 elif prob>i and labels[ind]<0.5: FP+=1 if pos_num!=0: TP_rate = TP / sum(labels) FP_rate = FP / (num-sum(labels)) roc_point.append([FP_rate, TP_rate]) # 记录ROC中的点 # 画出ROC曲线 roc_point.sort(key=lambda x: x[0]) plt.plot(np.array(roc_point)[1:, 0], np.array(roc_point)[1: ,1]) plt.xlabel("FPR") plt.ylabel("TPR") plt.show() # 计算每个小长方形的面积,求和即为auc lastx = 0. for x,y in roc_point: auc1 += (x-lastx)*y # 底乘高 lastx = x print("方法一 auc:", auc1) # 方法二,利用AUC关于排列概率的定义计算 auc2 = 0 P_ind = [] # 正样本下标 F_ind = [] # 负样本下标 P_F = 0 # 正样本分数高于负样本的数量 F_P = 0 # 负样本分数高于正样本的数量 # 计数过程 for ind, val in enumerate(labels): if val > 0.5: P_ind.append(ind) else: F_ind.append(ind) for Pi in P_ind: for Fi in F_ind: if pred_prob[Pi] > pred_prob[Fi]: P_F += 1 else: F_P += 1 auc2 = P_F/(len(P_ind)*len(F_ind)) print("方法二 auc:", auc2) # 方法三,方法二的改进,简化了计算,降低了时间复杂度 new_data = [[p, l] for p, l in zip(pred_prob, labels)] new_data.sort(key=lambda x:x[0]) # 求正样本rank之和 rank_sum = 0 for ind, [prob,label] in enumerate(new_data): if label>0.5: rank_sum+=ind auc3 = (rank_sum - len(P_ind)*(1+len(P_ind))/2) / (len(P_ind)*len(F_ind)) print("方法三 auc:", auc3)
运行结果
加载全部内容