亲宝软件园·资讯

展开

Python生成指定区间随机数

清风醉雨 人气:0

如何生成指定区间中的随机数

要求生成区间[a, b]中的随机数。若要求为浮点数,则Python中只能近似达到这一要求,因为随机函数的取值区间一般都为左闭右开区间,因为只能无限接近b。

若要求为整数,那么将取数区间设置为[a,b+1)即可以取到b了。

具体如下:

1. random()

numpy.random.random(size=None)
>>>import numpy as np
>>>np.random.random()
0.5312959368718575
>>>np.random.random(5)
array([ 0.2483017 ,  0.86182212,  0.03454678,  0.87525464,  0.31962688])
>>>np.random.random((2,3))
array([[ 0.66214521,  0.40083972,  0.05552421],
       [ 0.51091912,  0.6419505 ,  0.8757311 ]])

利用np.random.random()近似生成[a,b]的随机数,因为前者的取值范围是[0,1),是半开区间,所以右侧端点处的值b取不到。

>>>import numpy as np
>>>a + (b-a)*np.random.random()

2. rand()

numpy.random.rand(d0, d1, …, dn)

它和numpy.random.random(size=None)的主要区别就在于参数。例如生成2*3的array。注意观察参数的形式。

>>>import numpy as np
>>>np.random.random((2,3))
array([[ 0.66214521,  0.40083972,  0.05552421],
       [ 0.51091912,  0.6419505 ,  0.8757311 ]])
>>>np.random.rand(2,3)
array([[ 0.59786635,  0.88902485,  0.7038246 ],
       [ 0.44150109,  0.73660019,  0.70001489]])

3. randint()

生成指定区间的随机整数

numpy.random.randint(low, high=None, size=None, dtype=‘l')
>>> np.random.randint(2,5)
3
>>> np.random.randint(2,5,3)
array([2, 3, 3])
>>> np.random.randint(2,5,9)
array([3, 4, 3, 2, 3, 3, 4, 4, 2])
>>> np.random.randint(2,5,(2,3))
array([[4, 3, 2],
       [3, 3, 4]])

注意:取值的区间仍然是左闭右开区间[low, high)

若要求取[a,b]中的随机数,则

>>>np.random.randint(a, b+1)

python生成随机数总结

生成随机数和随机数操作

Python有自己专门处理随机数的功能,但大家最常用的还是numpy库里的生成随机数功能,因为Python 的 random 没有考虑数组类型的高效数据结构,所以在 array 类型的数据结构时,大家更喜欢直接用 Numpy 来生成,且它的功能更丰富,有各种随机数的生成方式,随机化当前数列,加速等。

Python自带random

import random
print(random.random()) # 随机生成一个0-1之间的随机数,例如0.7679099295136553
print(random.randint(1, 10)) # 随机生成一个1-10之间的整数,如3

numpy库的random

先导入库

import numpy as np

1. np.random.random_integers

numpy.random.random_integers(low, high=None, size=None)

该函数在最新的numpy版本中已被替代,建议使用randint函数

>>> np.random.random_integers(1,size=5)
array([1, 1, 1, 1, 1])

2. np.random.rand() 或 np.random.random()

# 功能一样,写法有点区别
np.random.rand(d0,d1,…,dn)
np.random.random([d0,d1,…,dn])
>>> np.random.rand(4,2)
array([[ 0.02173903,  0.44376568],
       [ 0.25309942,  0.85259262],
       [ 0.56465709,  0.95135013],
       [ 0.14145746,  0.55389458]])
>>> np.random.rand(4,3,2) # shape: 4*3*2
array([[[ 0.08256277,  0.11408276],
        [ 0.11182496,  0.51452019],
        [ 0.09731856,  0.18279204]],
 
       [[ 0.74637005,  0.76065562],
        [ 0.32060311,  0.69410458],
        [ 0.28890543,  0.68532579]],
 
       [[ 0.72110169,  0.52517524],
        [ 0.32876607,  0.66632414],
        [ 0.45762399,  0.49176764]],
 
       [[ 0.73886671,  0.81877121],
        [ 0.03984658,  0.99454548],
        [ 0.18205926,  0.99637823]]])

3. np.random.randn()

numpy.random.randn(d0,d1,…,dn)
>>> np.random.randn() # 当没有参数时,返回单个数据
-1.1241580894939212
>>> np.random.randn(2,4)
array([[ 0.27795239, -2.57882503,  0.3817649 ,  1.42367345],
       [-1.16724625, -0.22408299,  0.63006614, -0.41714538]])
       
>>> np.random.randn(4,3,2)
array([[[ 1.27820764,  0.92479163],
        [-0.15151257,  1.3428253 ],
        [-1.30948998,  0.15493686]],
 
       [[-1.49645411, -0.27724089],
        [ 0.71590275,  0.81377671],
        [-0.71833341,  1.61637676]],
 
       [[ 0.52486563, -1.7345101 ],
        [ 1.24456943, -0.10902915],
        [ 1.27292735, -0.00926068]],
 
       [[ 0.88303   ,  0.46116413],
        [ 0.13305507,  2.44968809],
        [-0.73132153, -0.88586716]]])

上面生成的都是小数,下面生成整数

4. np.random.randint()

numpy.random.randint(low, high=None, size=None, dtype='l')

函数作用:返回一个随机整型数或随机数数组,范围从低(闭)到高(开),即[low, high)。

如果没有写参数high的值,则返回[0,low)的值。

参数如下:

注:范围不对有可能报错 ValueError: low >= high

>>> np.random.randint(2, size=10)
array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0])
>>>np.random.randint(2, high=10, size=(2,3))
array([[6, 8, 7],
       [2, 5, 2]])

5. np.random.choice()

numpy.random.choice(a, size=None, replace=True, p=None)
>>> np.random.choice(5,3)
array([4, 1, 4])
>>> np.random.choice(5, 3, replace=False)
# 当replace为False时,生成的随机数不能有重复的数值(放不放回)
array([0, 3, 1])
>>> np.random.choice(5,size=(3,2))
array([[1, 0],
       [4, 2],
       [3, 3]])
       
>>> demo_list = ['lenovo', 'sansumg','moto','xiaomi', 'iphone']
>>> np.random.choice(demo_list,size=(3,3))
array([['moto', 'iphone', 'xiaomi'],
       ['lenovo', 'xiaomi', 'xiaomi'],
       ['xiaomi', 'lenovo', 'iphone']],
      dtype='<U7')
>>> demo_list = ['lenovo', 'sansumg','moto','xiaomi', 'iphone']
>>> np.random.choice(demo_list,size=(3,3), p=[0.1,0.6,0.1,0.1,0.1])
array([['sansumg', 'sansumg', 'sansumg'],
       ['sansumg', 'sansumg', 'sansumg'],
       ['sansumg', 'xiaomi', 'iphone']],
      dtype='<U7')

6. np.random.seed()

>>> np.random.seed(0)
>>> np.random.rand(5)
array([ 0.5488135 ,  0.71518937,  0.60276338,  0.54488318,  0.4236548 ])
>>> np.random.seed(1676)
>>> np.random.rand(5)
array([ 0.39983389,  0.29426895,  0.89541728,  0.71807369,  0.3531823 ])
>>> np.random.seed(1676)
>>> np.random.rand(5)
array([ 0.39983389,  0.29426895,  0.89541728,  0.71807369,  0.3531823 ])    

7. 随机分布

我们在生成数据的时候,有时需要按照特定的统计学分布来生成,比如一个正态分布的抽样数据,或者均匀分布的数据抽样结果,又或者泊松分布等等,都可以用 Numpy 来实现。机器学习中比较常用的 正态分布 和 均匀分布。

# (均值,方差,size)
print("正态分布:", np.random.normal(1, 0.2, 10))
# (最低,最高,size)
print("均匀分布:", np.random.uniform(-1, 1, 10))

8. 打乱功能

np.random.permutation(), 它实现的是 np.random.shuffle() 的一种特殊形式。

可以说是一种简单处理特殊情况的功能。

它有两个方便之处:

相比 np.random.shuffle(),permutation 有一个好处,就是可以返回一个新数据,对原本的数据没有影响。而且还可以处理多维数据。

np.random.permutation(10)) # 直接出10个乱序数
data = np.arange(12).reshape([6,2])
np.random.permutation(data)) # 将数据在第一维度上打乱

以上为个人经验,希望能给大家一个参考,也希望大家多多支持。

加载全部内容

相关教程
猜你喜欢
用户评论