亲宝软件园·资讯

展开

Python定制类

Flyme awei 人气:0

Python中的魔法方法

方法名说明
__str__用于返回对象的描述
__iter__使类可以迭代
__getitem__按照下标获取类元素,例如list
__getattr__调用类不存在的属性
__call__类实例化默认调用方法

看到类似 __slots__这种形如__xxx__的变量或者函数名就要注意,这些在Python中是有特殊用途的。

__slots__我们已经知道怎么用了,__len__方法我们也知道是为了能让class作用于 len() 函数。

这些在Python有另外的一些名称叫魔术方法

除此之外,Python的class中还有许多这斜体样式样有特殊用途的函数,可以帮助我们定制!

1.__str__

用于定制对象的描述信息

我们先定义一个 Student 类,打印一个实例:

>>> class Student(object):
    def __init__(self, name):
        self.name = name
>>> print(Student('张三'))
<__main__.Student object at 0x000001AC142D3370>
>>> 

打印出一堆<__main__.Student object at 0x000001AC142D3370>, 不好看。

怎么才能打印得好看呢?只需要定义好 __str__() 方法,返回一个好看的字符串就可以了:

# -*- coding: utf-8 -*-
class Person(object):
    def __init__(self, name):
        self.name = name
    # 用于定制对象的描述信息
    def __str__(self):
        return "Person object (name:%s)" % self.name
if __name__ == '__main__':
    p = Person('张三')
    print(p)

这样打印出来的实例,不但好看,而且容易看出实例内部重要的数据。

2.__iter__

如果一个类想被用于 for ... in 循环,类似listtuple那样,就必须实现一个 __iter__()方法,该方法返回一个迭代对象,然后,Python的for循环就会不断调用该迭代对象的 __next__() 方法拿到循环的下一个值,直到遇StopIteration 错误时退出循环。

我们以斐波那契数列为例,写一个Fib类,可以作用于for循环:

class Fib(object):
    # Fib默认不是可迭代对象,变成一个可迭代对象,必须返回一个迭代器
    def __init__(self):
        self.a, self.b = 0, 1  # 斐波那契数列前两个固定的值
    # 重写 __iter__方法,Fib变为可迭代对象
    def __iter__(self):
        return self
    # 重写__next__方法,Fib就变成一个迭代器
    def __next__(self):
        self.a, self.b = self.b, self.a + self.b  # 计算下一个值
        if self.a > 1000:
            raise StopIteration
        return self.a
if __name__ == '__main__':
    print('小于1000的所有斐波那契数:', end=' ')
    for i in Fib():
        print(i, end=' ')

3.__getitem__

Fib实例虽然能作用于for循环,看起来和list有点像,但是,把它当成list来使用还是不行,比如,取第5个元素:

>>> Fib()[5]
Traceback (most recent call last): 
    File "<stdin>", line 1, in <module> 
TypeError: 'Fib' object does not support indexing
>>>

要表现得像list那样按照下标取出元素,需要实现 __getitem__() 方法:

# -*- coding: utf-8 -*-
class Fib(object):
    # 重写__getitem__,Fib 可以类似于 list
    def __getitem__(self, item):
        a, b = 1, 1
        for x in range(item):
            a, b = b, a+b
        return a

现在,就可以按下标访问数列的任意一项了

if __name__ == '__main__':
    f = Fib()
    print(f[5])
    print(f[6])
    print(f[10])
    print(f[15]) 

输出:

但是list有个神奇的切片方法:

>>> list(range(100)[5:10])
[5, 6, 7, 8, 9]

对于Fib却报错。原因是 __getitem__() 传入的参数可能是一个int,也可能是一个切片对象 slice ,所以要做判断

# -*- coding: utf-8 -*-
class Fib(object):
    def __getitem__(self, item):  # # item是一个下标, 也有可能是一个切片
        if isinstance(item, int):  # item 是一个 int 下标
            a, b = 1, 1
            for _ in range(item):   # rage(item) 用作循环次数
                a, b = b, a+b
            return a
        elif isinstance(item, slice):  # item 是一个切片(范围)
            start = item.start
            stop = item.stop
            if start is None:
                start = 0  # start初始值为 0 
            a, b = 1, 1
            l = []
            for _ in range(stop):
                l.append(a)
                a, b = b, a+b
            return l

现在试试Fib的切片:

if __name__ == '__main__':
    print(Fib()[9])
    print(Fib()[1:10])

输出:

但是没有对step参数作处理:

>>> f[:10:2] 
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

也没有对负数作处理,所以,要正确实现一个 __getitem__() 还是有很多工作要做的。

此外,如果把对象看成 dict , __getitem__() 的参数也可能是一个可以作keyobject,例如 str

与之对应的是 __setitem__() 方法,把对象视作listdict来对集合赋值。最后,还有一个 __delitem__() 方法,用于删除某个元素。

总之,通过上面的方法,我们自己定义的类表现得和Python自带的list、tuple、dict没什么区别,这完全归功于动态语言的“鸭子类型”,不需要强制继承某个接口。

4.__getattr__

正常情况下,当我们调用类的方法或属性时,如果不存在,就会报错。比如定义 Student 类:

class Student(object):
    def __init__(self):
        self.name = 'Michale'

调用 name 属性,没问题,但是,调用不存在的 score 属性,就有问题了:

>>> s = Student() 
>>> print(s.name) 
Michael 
>>> print(s.score) 
>Traceback (most recent call last): 
... 
AttributeError: 'Student' object has no attribute 'score'

错误信息很清楚地告诉我们,没有找到 score 这个attribute

要避免这个错误,除了可以加上一个 score 属性外,Python还有另一个机制,那就是写一个 __getattr__() 方法,动态返回一个属性。修改如下:

class Student(object):
    def __init__(self):
        self.name = 'Michale'
    def __getattr__(self, item):
        if item == 'score':
            return 99     

当调用不存在的属性时,比如 score ,Python解释器会试图调用 __getattr__(self, 'score') 来尝试获得属性,这样,我们就有机会返回 score 的值:

>>> s = Student() 
>>> s.name 
'Michael' 
>>> s.score 
99
>>>

返回函数也是完全可以的:

class Student(object):
	def __getattr__(self, start):
		if attr == 'age':
			return lambda : 25

只是调用方法变为:

>>> s,age()
25

注意,只有在没有找到属性的情况下,才调用 __getattr__ ,已有的属性,比如 name ,不会在 __getattr__中查找。

此外,注意到任意调用如 s.abc 都会返回 None ,这是因为我们定义的 __getattr__ 默认返回就是 None 。要让class只响应特定的几个属性,我们就要按照约定,抛出 AttributeError 的错误:

class Student(object):
    def __getattr__(self, attr):
        if attr == 'age':
            return lambda: 25
        raise AttributeError('\'Student\' object has no attribute \'%s\'' % attr)

这实际上可以把一个类的所有属性和方法调用全部动态化处理了,不需要任何特殊手段。

这种完全动态调用的特性有什么实际作用呢?作用就是,可以针对完全动态的情况作调用。

5.__call__

一个对象实例可以有自己的属性和方法,当我们调用实例方法时,我们用instance.method() 来调用。

能不能直接在实例本身上调用呢?在Python中,答案是肯定的。

任何类,只需要定义一个 __call__() 方法,就可以直接对实例进行调用。请看示例:

class Student(object):
    def __init__(self, name):
        self.name = name
    def __call__(self, *args, **kwargs):
        print('My name is %s.' % self.name)   

调用方式如下:

>>> s = Student('awei')
>>> s()  # self参数不要传入
My name is awei.

__call__() 还可以定义参数。对实例进行直接调用就好比对一个函数进行调用一样,所以你完全可以把对象看成函数,把函数看成对象,因为这两者之间本来就没啥根本的区别。

如果你把对象看成函数,那么函数本身其实也可以在运行期动态创建出来,因为类的实例都是运行期创建出来的,这么一来,我们就模糊了对象和函数的界限。

那么,怎么判断一个变量是对象还是函数呢?其实,更多的时候,我们需要判断一个对象是否能被调用,能被调用的对象就是一个 Callable 对象,比如函数和我们上面定义的带有 __call__() 的类实例:

>>> callable(Student()) 
True 
>>> callable(max) 
True 
>>> callable([1, 2, 3]) 
False 
>>> callable(None) 
False 
>>> callable('str') 
False

通过 callable() 函数,我们就可以判断一个对象是否是“可调用”对象。

加载全部内容

相关教程
猜你喜欢
用户评论