亲宝软件园·资讯

展开

Python 顶帽运算 底帽运算

Eastmount 人气:0

一.图像顶帽运算

图像顶帽运算(top-hat transformation)又称为图像礼帽运算,它是用原始图像减去图像开运算后的结果,常用于解决由于光照不均匀图像分割出错的问题。其公式定义如下:

图像顶帽运算是用一个结构元通过开运算从一幅图像中删除物体,顶帽运算用于暗背景上的亮物体,它的一个重要用途是校正不均匀光照的影响。其效果图如图1所示。

在Python中,图像顶帽运算主要调用morphologyEx()实现,其中参数cv2.MORPH_TOPHAT表示顶帽处理,函数原型如下:

dst = cv2.morphologyEx(src, cv2.MORPH_TOPHAT, kernel)

假设存在一张光照不均匀的米粒图像,如图2所示,我们需要调用图像顶帽运算解决光照不均匀的问题。

图像顶帽运算的Python代码如下所示:

# -*- coding: utf-8 -*-
# By:Eastmount
import cv2  
import numpy as np  

#读取图片
src = cv2.imread('test01.png', cv2.IMREAD_UNCHANGED)

#设置卷积核
kernel = np.ones((10,10), np.uint8)

#图像顶帽运算
result = cv2.morphologyEx(src, cv2.MORPH_TOPHAT, kernel)

#显示图像
cv2.imshow("src", src)
cv2.imshow("result", result)

#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

其运行结果如图3所示。

下图展示了“米粒”顶帽运算的效果图,可以看到顶帽运算后的图像删除了大部分非均匀背景,并将米粒与背景分离开来。

为什么图像顶帽运算会消除光照不均匀的效果呢?

通常可以利用灰度三维图来进行解释该算法。灰度三维图主要调用Axes3D包实现,对原图绘制灰度三维图的代码如下:

# -*- coding: utf-8 -*-
# By:Eastmount
import numpy as np
import cv2 as cv
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter

#读取图像
img = cv.imread("test02.png")
img = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
imgd = np.array(img)      #image类转numpy

#准备数据
sp = img.shape
h = int(sp[0])        #图像高度(rows)
w = int(sp[1])        #图像宽度(colums) of image

#绘图初始处理
fig = plt.figure(figsize=(16,12))
ax = fig.gca(projection="3d")

x = np.arange(0, w, 1)
y = np.arange(0, h, 1)
x, y = np.meshgrid(x,y)
z = imgd
surf = ax.plot_surface(x, y, z, cmap=cm.coolwarm)  

#自定义z轴
ax.set_zlim(-10, 255)
ax.zaxis.set_major_locator(LinearLocator(10))   #设置z轴网格线的疏密

#将z的value字符串转为float并保留2位小数
ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f')) 

# 设置坐标轴的label和标题
ax.set_xlabel('x', size=15)
ax.set_ylabel('y', size=15)
ax.set_zlabel('z', size=15)
ax.set_title("surface plot", weight='bold', size=20)

#添加右侧的色卡条
fig.colorbar(surf, shrink=0.6, aspect=8)  
plt.show()

运行结果如图5所示,其中x表示原图像中的宽度坐标,y表示原图像中的高度坐标,z表示像素点(x, y)的灰度值。

从图像中的像素走势显示了该图受各部分光照不均匀的影响,从而造成背景灰度不均现象,其中凹陷对应图像中灰度值比较小的区域。

通过图像白帽运算后的图像灰度三维图如图6所示,对应的灰度更集中于10至100区间,由此证明了不均匀的背景被大致消除了,有利于后续的阈值分割或图像分割。

绘制三维图增加的顶帽运算核心代码如下:

二.图像底帽运算

图像底帽运算(bottom-hat transformation)又称为图像黑帽运算,它是用图像闭运算操作减去原始图像后的结果,从而获取图像内部的小孔或前景色中黑点,也常用于解决由于光照不均匀图像分割出错的问题。其公式定义如下:

图像底帽运算是用一个结构元通过闭运算从一幅图像中删除物体,常用于校正不均匀光照的影响。其效果图如图8所示。

在Python中,图像底帽运算主要调用morphologyEx()实现,其中参数cv2.MORPH_BLACKHAT表示底帽或黑帽处理,函数原型如下:

dst = cv2.morphologyEx(src, cv2.MORPH_BLACKHAT, kernel)

Python实现图像底帽运算的代码如下所示:

# -*- coding: utf-8 -*-
# By:Eastmount
import cv2  
import numpy as np  

#读取图片
src = cv2.imread('test02.png', cv2.IMREAD_UNCHANGED)

#设置卷积核
kernel = np.ones((10, 10), np.uint8)

#图像黑帽运算
result = cv2.morphologyEx(src, cv2.MORPH_BLACKHAT, kernel)

#显示图像
cv2.imshow("src", src)
cv2.imshow("result", result)

#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

其运行结果如图9所示:

三.总结

该系列主要讲解了图像数学形态学知识,结合原理和代码详细介绍了图像腐蚀、图像膨胀、图像开运算和闭运算、图像顶帽运算和图像底帽运算等操作。这篇文章详细介绍了顶帽运算和底帽运算,它们将为后续的图像分割和图像识别提供有效支撑。

加载全部内容

相关教程
猜你喜欢
用户评论