亲宝软件园·资讯

展开

JavaScript 同步异步

大莲芒 人气:0

如图所示,JS的三座大山:

1. 同步、异步

JavaScript执行机制,重点有两点:

JS为什么是单线程

最初设计JS是用来在浏览器验证表单操控DOM元素的是一门脚本语言,如果js是多线程的,那么两个线程同时对一个DOM元素进行了相互冲突的操作,那么浏览器的解析器是无法执行的。

js为什么需要异步

如果js中不存在异步,只能自上而下执行,如果上一行解析时间很长,那么下面的代码就会被阻塞。

对于用户而言,阻塞就以为着“卡死”,这样就导致了很差的用户体验。比如在进行ajax请求的时候如果没有返回数据后面的代码就没办法执行

JS的事件循环(eventloop)是怎么运作的

如图所示:

那怎么知道主线程执行栈为空呢?js引擎存在monitoring process进程,会持续不断的检查 主线程执行栈是否为空,一旦为空,就会去event queue那里检查是否有等待被调用的函数

宏任务 包含整个script代码块,setTimeout, setIntval

微任务 Promise , process.nextTick

在划分宏任务、微任务的时候并没有提到async/ await的本质就是Promise

setTimeout(function() {
    console.log('4')
})
new Promise(function(resolve) {
    console.log('1') // 同步任务
    resolve()
}).then(function() {
    console.log('3')
})
console.log('2')

执行结果: 1-2-3-4
1. 这段代码作为宏任务,进入主线程。
2. 先遇到setTimeout,那么将其回调函数注册后分发到宏任务event queue.
3. 接下来遇到Promise, new Promise立即执行,then函数分发到微任务event queue
4. 遇到console.log(), 立即执行
5. 整体代码script作为第一个宏任务执行结束, 查看当前有没有可执行的微任务,执行then的回调。(第一轮事件循环结束了,我们开始第二轮循环)
6. 从宏任务的event queue开始,我们发现了宏任务event queue中setTimeout对应的回调函数,立即执行。

console.log('1')
setTimeout(function() {
    console.log('2')
    process.nextTick(function() {
        console.log('3')
    })
    new Promise(function(resolve) {
        console.log('4')
        resolve()
    }).then(function() {
        console.log('5')
    })
})
process.nextTick(function() {
    console.log('6')
})
new Promise(function(resolve) {
    console.log('7')
    resolve()
}).then(function() {
    console.log('8')
})
setTimeout(function() {
    console.log('9')
    process.nextTick(function() {
        console.log('10')
    })
    new Promise(function(resolve) {
        console.log('11')
        resolve()
    }).then(function() {
        console.log('12')
    })
})

1.整体script作为第一个宏任务进入主线程,遇到console.log(1)输出1

遇到setTimeout, 其回调函数被分发到宏任务event queue中。我们暂且记为setTimeout1
3.遇到process.nextTick(),其回调函数被分发到微任务event queue中,我们记为process1
4.遇到Promise, new Promise直接执行,输出7.then被分发到微任务event queue中,我们记为then1
又遇到setTimeout,其回调函数被分发到宏任务event queue中,我们记为setTimeout2.
现在开始执行微任务, 我们发现了process1和then1两个微任务,执行process1,输出6,执行then1,输出8, 第一轮事件循环正式结束, 这一轮的结果输出1,7,6,8.那么第二轮事件循环从setTimeout1宏任务开始
5. 首先输出2, 接下来遇到了process.nextTick(),统一被分发到微任务event queue,记为process2
8new Promise立即执行,输出4,then也被分发到微任务event queue中,记为then2
6. 现在开始执行微任务,我们发现有process2和then2两个微任务可以执行输出3,5. 第二轮事件循环结束,第二轮输出2,4,3,5. 第三轮事件循环从setTimeout2哄任务开始
10。 直接输出9,跟第二轮事件循环类似,输出9,11,10,12
7. 完整输出是1,7,6,8,2,4,3,5,9,11,10,12(请注意,node环境下的事件监听依赖libuv与前端环境不完全相同,输出顺序可能会有误差)

async/await用来干什么

用来优化promise的回调问题,被称为是异步的终极解决方案

async/await内部做了什么

async函数会返回一个Promise对象,如果在函数中return一个直接量(普通变量),async会把这个直接量通过Promise.resolve()封装成Promise对象。如果你返回了promise那就以你返回的promise为准。await是在等待,等待运行的结果也就是返回值。await后面通常是一个异步操作(promise),但是这不代表await后面只能跟异步才做,await后面实际是可以接普通函数调用或者直接量。

async相当于 new Promise,await相当于then

await的等待机制

如果await后面跟的不是一个promise,那await后面表达式的运算结果就是它等到的东西,如果await后面跟的是一个promise对象,await它会’阻塞’后面的diamante,等着promise对象resolve,

然后得到resolve的值作为await表达式的运算结果。但是此"阻塞"非彼“阻塞”,这就是await必须用在async函数中的原因。 async函数调用不会造成"阻塞",它内部所有的“阻塞”都被封装在一个promise对象中异步执行(这里的阻塞理解成异步等待更合理)

async/await在使用过程中有什么规定

每个async方法都返回一个promise, await只能出现在async函数中

async/await在什么场景使用

单一的promise链并不能发现async/await的有事,但是如果需要处理由多个promise组成的then链的时候,优势就能体现出来了(Promise通过then链来解决多层回调的问题,现在又用async/awai来进一步优化它)

2. 作用域、闭包

闭包

作用域

说起闭包,就必须要说说作用域,ES5种只存在两种作用域:

let a = 1;
function f1() {
    var a = 2
  function f2() {
       var a = 3;
       console.log(a); //3
   }
}

在这段代码中,

function f2() {
    var a = 2
    function f3() {
        console.log(a); //2
    }
    return f3;
}
var x = f2();
x();

这里x会拿到父级作用域中的变量, 输出2。

因为在当前环境中,含有对f3的引用, f3恰恰引用了window、 f3和f3的作用域。

因此f3可以访问到f2的作用域的变量。那是不是只有返回函数才算是产生了闭包呢?回到闭包的本质,只需要让父级作用域的引用存在即可。

var f4;
function f5() {
    var a = 2
    f4 = function () {
        console.log(a);
    }
}
f5();
f4();

让f5执行,给f4赋值后,等于说现在f4拥有了window、f5和f4本身这几个作用域的访问权,还是自底向上查找,最近是在f5中找到了a,因此输出2。在这里是外面的变量f4存在着父级作用域的引用,

因此产生了闭包,形式变了,本质没有改变。

场景

IIFE(立即执行函数表达式) 创建闭包, 保存了全局作用域window和当前函数的作用域。

	var b = 1;
	function foo() {
	    var b = 2;
	
	    function baz() {
	        console.log(b);
	    }
	    bar(baz);
	}
	function bar(fn) {
	    // 这就是闭包
	    fn();
	}
	// 输出2,而不是1
	foo();
	// 以下的闭包保存的仅仅是window和当前作用域。
	// 定时器
	setTimeout(function timeHandler() {
	   console.log('111');
	}, 100)
	
	// 事件监听
	// document.body.click(function () {
	//     console.log('DOM Listener');
	// })
	// 立即执行函数
	var c = 2;
	(function IIFE() {
	    // 输出2
	    console.log(c);
	})();

经典的一道题

for (var i = 1; i <= 5; i++) {
    setTimeout(function timer() {
        console.log(i)
    }, 0)
}  // 6 6 6 6 6 6
// 为什么会全部输出6? 如何改进, 让它输出1, 2, 3, 4, 5?

解析:

往上一级再找,发现了i,此时循环已经结束,i变成了6,因此会全部输出6。

利用IIFE(立即执行函数表达式)当每次for循环时,把此时的i变量传递到定时器中

	for (var i = 0; i < 5; i++) {
	    (function (j) {
	        setTimeout(() => {
	            console.log(j)
	        }, 1000);
	    })(i)
	}

给定时器传入第三个参数, 作为timer函数的第一个函数参数

for (var i = 0; i < 5; i++) {
	    setTimeout(function (j) {
	        console.log(j)
	    }, 1000, i);
	}

使用ES6中的let

for (let i = 1; i <= 5; i++) {
    setTimeout(function timer() {
        console.log(i)
    }, 2000)
}

3. 原型、原型链

原型(prototype)

JS中所有函数都会有prototype属性,只有函数才有

其所有的属性和方法都能被构造函数的实例对象共享访问

代码如下:

function Person(name){
		this.name = name
	}
	Person.prototype.sayHello(){
		console.log('sayHello')
	}
	let p1 = new Person();
	let p2 = new Person();
	console.log(p1.sayHello) //sayHello
	console.log(p2.sayHello) //sayHello

构造函数(constructor)

JS中constructor存在每个函数的prototype属性中,其保存了指向该函数的引用

Person.prototype.constructor ==Person   //true

原型链(_ _ proto _ _)

JS中对象都会有个内置属性,即__proto__,(隐式原型链的属性),一般情况下执行创建它的构造函数的prototype的属性,另外函数比较特殊,也会有该属性

p1.__proto__ == Person.prototype

JS 引擎查找摸个属性时,先查找对象本身是否存在该属性,如果不存在就会在原型链上一层一层进行查找

有几个面试经常会问的几个问题

如何精确地判断短数组的类型

[] instanceof Array   //[].__proto__ == Array.prototype
Object.prototype.toString.call([])  //[Object Array]
Array.isArray([]) //true
[].constructor ==Array

下面代码输出什么

Object instanceof Function //true
Function instanceof Object // true

实现一个原型链继承

	function Person(name){
		this.name = name
	}
	Person.prototype.sayHello(){
		console.log('sayHello')
	}
	function Boy(){};
	Boy.prototype = new Person();
	let b1 = new Boy();
	b1.sayHello() //sayHello

原型、原型链、构造函数、实例的关系

1.instanceof检测构造函数与实例的关系:

	function Person () {.........}
	person = new Person ()
	res = person instanceof Person
	res  // true

2.实例继承原型上的定义的属性:

	function Person () {........}
	Person.prototype.type = 'object n'
	person = new Person ()
	res = person.type
	res  // object n

3.实例访问 ===> 原型

实例通过__proto__访问到原型 person.proto=== Person.prototype

4.原型访问 ===> 构造函数

原型通过constructor属性访问构造函数 Person.prototype.constructor === Person

5.实例访问===>构造函数

person.proto.constructor === Person

原型链

在读取一个实例的属性的过程中,如果属性在该实例中没有找到,那么就会循着 proto 指定的原型上去寻找,如果还找不到,则寻找原型的原型:

实例上寻找

function Person() {}
    Person.prototype.type = "object name Person";
    person = new Person();
    person.type = "我是实例的自有属性";
    res = Reflect.ownKeys(person); //尝试获取到自有属性
    console.log(res);
    res = person.type;
    console.log(res); //我是实例的自有属性(通过原型链向上搜索优先搜索实例里的)

原型上寻找

function Person() {}
    Person.prototype.type = "object name Person";
    person = new Person();
    res = Reflect.ownKeys(person); //尝试获取到自有属性
    console.log(res);
    res = person.type;
    console.log(res); //object name Person

原型的原型上寻找

function Person() {}
    Person.prototype.type = "object name Person";
    function Child() {}
    Child.prototype = new Person();
    p = new Child();
    res = [p instanceof Object, p instanceof Person, p instanceof Child];
    console.log(res); //[true, true, true] p同时属于Object,Person, Child
    res = p.type; //层层搜索
    console.log(res); //object name Person (原型链上搜索)
    console.dir(Person);
    console.dir(Child);

原型链上搜索

原型同样也可以通过 proto 访问到原型的原型,比方说这里有个构造函数 Child 然后“继承”前者的有一个构造函数 Person,然后 new Child 得到实例 p;

当访问 p 中的一个非自有属性的时候,就会通过 proto 作为桥梁连接起来的一系列原型、原型的原型、原型的原型的原型直到 Object 构造函数为止;

原型链搜索搜到 null 为止,搜不到那访问的这个属性就停止:

function Person() {}
  Person.prototype.type = "object name Person";
  function Child() {}
  Child.prototype = new Person();
  p = new Child();
  res = p.__proto__;
  console.log(res);         //Person {}
  res = p.__proto__.__proto__;
  console.log(res);         //Person {type:'object name Person'}
  res = p.__proto__.__proto__.__proto__;
  console.log(res);         //{.....}
  res = p.__proto__.__proto__.__proto__.__proto__;
  console.log(res);         //null

继承

什么是继承

为什么要有继承

提高代码的重用性、较少代码的冗余

目前我总结的一共有6种继承方式

function Person(name){
	this.name = name;
	this.sum=function(){
		alert('this.name',this.name)
	}
}
Person.prototype.age = 100

原型链继承

实现方式: 利用原型链的特点继承,让实例的原型等于父类的实例

优点: 实例可以继承父类的构造个函数,实例的构造函数,父类的原型

缺点: 不能向父类传递参数,由于实例的原型等于父类的实例,那么改变父类的属性,实例的属性也会跟着改变

function child(){
	this.name="xiaoming"
}
child.prototype = new Person()
let child1 = new Child()
child1.name //xiaoming
child1.age //100
child1 instanceof Person //true

借用构造函数继承

实现方式: 使用call/apply将父类的构造函数引入子类函数

优点: 可以祢补原型链继承的缺点,可以向父类传递参数,只继承父类构造函数的属性

缺点: 不能复用,每次使用需要重新调用,每个实例都是父类构造函数的副本,比较臃肿

	function child(){
		Person.call(this,'xiaoming')
	}
	let child1 = new child()
	child1.name //xiaoming
	child1.age //100
	child1 instanceof Person //false

组合式继承

实现方式: 复用+可传递参数

优点: 基于原型链的优点和借用构造函数的优点

缺点: 调用两遍父类函数

	function child(){
		Person.call(this,'xiaoming')
	}
	child.prototype = new Person 
	let child1 = new child()
	child1.name //xiaoming
	child1.age //100
	child1 instanceof Person //true
	child instanceof Person //false

原型式继承

实现方式: 函数包装对象,返回对象的引用,这个函数就变成可以随时添加实例或者对象,Object.create()就是这个原理

优点: 复用一个对象用函数包装

缺点: 所有实例都继承在原型上面 无法复用

	function child(obj){
		 function F(){}
		 F.prototype = obj
		 return new F()
	}
	let child1 = new Person()
	let child2 = child(child1)
	child2.age //100

寄生式继承

实现方式: 在原型式继承外面包了一个壳子

优点: 创建一个新对象

缺点: 没有用到实例 无法复用

	function child(obj){
		 function F(){}
		 F.prototype = obj
		 return new F()
	}
	let child1 = new Person()
	function subObject(){
		let sub =child(child1)
		sub.name='xiaoming'
		return sub
	}
	let child2 = subObject(child1)
	typeof subObject //function
	typeof child2 //object
	child2.age //100

寄生组合式继承

实现方式: 在函数内返回对象的调用

优点: 函数的实例等于另外的一个实例,使用call/apply引入另一个构造函数,可传递参数,修复了组合继承的问题

缺点: 无法复用

	function child(obj){
			 function F(){}
			 F.prototype = obj
			 return new F()
		}
		let child1 = child(Person.prototype)
		function Sub(){
			Person.call(this)
		}
		Sub.prototype = child
		child.constructor = Sub
		let sub1 = new Sub()
		sub1.age //100

加载全部内容

相关教程
猜你喜欢
用户评论