亲宝软件园·资讯

展开

Python matplotlib 图绘制

Alan and fish 人气:0

前言

导入绘图库:

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import os

读取数据(数据来源是一个EXCLE表格,这里演示的是如何将数据可视化出来)

os.chdir(r'E:\jupyter\数据挖掘\数据与代码')
df = pd.read_csv('air_data.csv',na_values= '--') 

1.折线图

# 绘制观察窗口内的飞行次数和观测窗口内的总飞行里程数
# 支持中文显示
plt.rcParams['font.sans-serif']=['SimHei']# 字体
plt.rcParams['axes.unicode_minus']=False
x=np.linspace(0,10,100)
y=np.sin(x)
plt.plot(x,y,ls='-',lw=2,marker='o',markersize=5,c='red',markeredgecolor='black',markerfacecolor='lightskyblue')
plt.show()

2.直方图

# 绘制年龄的分布情况
plt.hist(x=df['AGE'],bins=30,color='r',edgecolor='black',density=True) # density=True 代表是否绘制概率密度形式
plt.xlabel('客户年龄',fontsize=15,labelpad=20)
plt.ylabel('频数',fontsize=15,labelpad=20)
plt.title('年龄分布图',fontsize=15,pad=20)
plt.show()

3.箱线图

age=df[df['AGE'].notnull()]['AGE'] # 剔除年龄的空值
plt.boxplot(x=age,patch_artist=True,boxprops={'color':'red'})
plt.show()

4.柱状图

# 将字符型数据转换date格式
df['FFP_DATE']=pd.to_datetime(df['FFP_DATE'],format='%Y/%m/%d',errors='coerce') # errors 避免报错
data=df['FFP_DATE'].dt.year.value_counts()
x_data=data.index
y_data=data.values
plt.bar(x=x_data,height=y_data,align='center',color='y',tick_label=x_data)
plt.title('不同年份的会员数量',pad=5)
plt.show()

5.饼图

autopct:设置百分比的格式

data=df['GENDER'].value_counts()
# 绘制饼图
plt.pie(x=data.values,labels=data.index,colors=['lightskyblue','lightcoral'],autopct='%.1f%%')
plt.show()

6.散点图

# 飞行次数与总飞行公里数的关系
plt.scatter(x=df['FLIGHT_COUNT'],y=df['SEG_KM_SUM'],color='steelblue',marker='o',s=100)
plt.title('飞行次数与总飞行公里数的关系')
plt.show()

加载全部内容

相关教程
猜你喜欢
用户评论