Python分水岭分割算法
求则得之,舍则失之 人气:0分水岭技术是一种众所周知的分割算法,特别适用于提取图片中的相邻或重叠对象。使用分水岭方法时,我们必须从用户定义的标记开始。这些标记可以使用点击手动定义,也可以使用阈值或形态学处理方法定义。
分水岭技术将输入图像中的像素视为基于这些标记的局部极小值(称为地形)——该方法从标记向外“淹没”山谷,直到各种标记的山谷相遇。为了产生准确的分水岭分割,必须准确地设置标记。
我们使用一种基于OpenCV标记的分水岭技术来指定哪些谷点应该合并,哪些不应该合并。它是一种交互式图像分割,而不是自动图像分割。
1. 原理
任何灰度图像都可以看作是一个地形表面,高峰代表高强度,山谷代表低强度。首先,用各种颜色的水(标签)填充孤立的山谷(局部极小值)。来自不同山谷的河流,颜色明显不同,随着水位上升,根据相邻的山峰(梯度)开始融合。为了避免这种情况,在水与水相遇的地方建造了屏障。你不断注水,设置障碍,直到所有的山峰都被淹没,分割结果由创建的障碍决定。
然而,由于图像中存在噪声或其他异常,该方法会产生过分割的结果。因此,OpenCV创建了一个基于标记的分水岭方法,允许您选择哪些谷点应该合并,哪些不应该合并。它是一种交互式图像分割方法。我们所做的就是给每一个前景物体区域贴上不同的标签,我们不确定的区域是标签记为0。然后,使用分水岭算法。获得的结果中,对象的边界值将为-1。
2.代码实现
2.1 利用OpenCV和c++实现分水岭算法
#include <iostream> #include <opencv2/imgcodecs.hpp> #include <opencv2/highgui.hpp> #include <opencv2/imgproc.hpp> #include <vector> void showImg(const std::string& windowName,const cv::Mat& img){ cv::imshow(windowName,img); } void getBackground(const cv::Mat& source,cv::Mat& dst) { cv::dilate(source,dst,cv::Mat::ones(3,3,CV_8U)); //Kernel 3x3 } void getForeground(const cv::Mat& source,cv::Mat& dst) { cv::distanceTransform(source,dst,cv::DIST_L2,3,CV_32F); cv::normalize(dst, dst, 0, 1, cv::NORM_MINMAX); } void findMarker(const cv::Mat& sureBg,cv::Mat& markers, std::vector<std::vector<cv::Point>>& contours) { cv::findContours(sureBg,contours,cv::RETR_EXTERNAL, cv::CHAIN_APPROX_SIMPLE); // Draw the foreground markers for (size_t i = 0,size = contours.size(); i < size; i++) drawContours(markers, contours, static_cast<int>(i), cv::Scalar(static_cast<int>(i)+1), -1); } void getRandomColor(std::vector<cv::Vec3b>& colors,size_t size) { for (int i = 0; i < size ; ++i) { int b = cv::theRNG().uniform(0, 256); int g = cv::theRNG().uniform(0, 256); int r = cv::theRNG().uniform(0, 256); colors.emplace_back(cv::Vec3b((uchar)b, (uchar)g, (uchar)r)); } } int main (int argc,char** argv) { // 读取图片 if(argc < 2) { std::cerr << "Error\n"; std::cerr << "Provide Input Image:\n<program> <inputimage>\n"; return -1; } cv::Mat original_img = cv::imread(argv[1]); if(original_img.empty()) { std::cerr << "Error\n"; std::cerr << "Cannot Read Image\n"; return -1; } // 去除图像中的噪声, 均值偏移模糊(MeanShift)是一种图像边缘保留滤波算法,常用于图像分水岭分割前的去噪,可显着提高分水岭分割效果。 cv::Mat shifted; cv::pyrMeanShiftFiltering(original_img,shifted,21,51); showImg("Mean Shifted",shifted); // 将原始图像转换为灰度和二值图像 cv::Mat gray_img; cv::cvtColor(original_img,gray_img,cv::COLOR_BGR2GRAY); showImg("GrayIMg",gray_img); cv::Mat bin_img; cv::threshold(gray_img,bin_img,0,255,cv::THRESH_BINARY | cv::THRESH_OTSU); showImg("thres img",bin_img); // 寻找确定的背景图像, 在这一步中,我们找到图像中的背景区域。 cv::Mat sure_bg; getBackground(bin_img,sure_bg); showImg("Sure Background",sure_bg); // 找到确定前景的图像, 对于图像的前景,我们采用距离变换算法 cv::Mat sure_fg; getForeground(bin_img,sure_fg); showImg("Sure ForeGround",sure_fg); // 找到标记,在应用分水岭算法之前,我们需要标记。为此,我们将使用opencv中提供的findContour()函数来查找图像中的标记。 cv::Mat markers = cv::Mat::zeros(sure_bg.size(),CV_32S); std::vector<std::vector<cv::Point>> contours; findMarker(sure_bg,markers,contours); cv::circle(markers, cv::Point(5, 5), 3, cv::Scalar(255), -1); //Drawing Circle around the marker // 应用分水岭算法 cv::watershed(original_img,markers); cv::Mat mark; markers.convertTo(mark, CV_8U); cv::bitwise_not(mark, mark); //黑变白,白变黑 showImg("MARKER",mark); //高亮显示图像中的标记 std::vector<cv::Vec3b> colors; getRandomColor(colors,contours.size()); //构建结果图像 cv::Mat dst = cv::Mat::zeros(markers.size(), CV_8UC3); // 用随机的颜色填充已标记的物体 for (int i = 0; i < markers.rows; i++) { for (int j = 0; j < markers.cols; j++) { int index = markers.at<int>(i,j); if (index > 0 && index <= static_cast<int>(contours.size())) dst.at<cv::Vec3b>(i,j) = colors[index-1]; } } showImg("Final Result",dst); cv::waitKey(0); return 0; }
结果展示:
2.2 Python实现分水岭分割(1)
import cv2 as cv import numpy as np import argparse import random as rng rng.seed(12345) parser = argparse.ArgumentParser(description='Code for Image Segmentation with Distance Transform and Watershed Algorithm.\ Sample code showing how to segment overlapping objects using Laplacian filtering, \ in addition to Watershed and Distance Transformation') parser.add_argument('--input', help='Path to input image.', default='HFOUG.jpg') args = parser.parse_args() src = cv.imread(cv.samples.findFile(args.input)) if src is None: print('Could not open or find the image:', args.input) exit(0) # Show source image cv.imshow('Source Image', src) cv.waitKey() gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY) ret, thresh = cv.threshold(gray, 0, 255, cv.THRESH_BINARY + cv.THRESH_OTSU) # noise removal kernel = np.ones((5, 5), np.uint8) opening = cv.morphologyEx(thresh, cv.MORPH_OPEN, kernel, iterations=2) # 获取背景图 sure_bg = opening.copy() # 背景 # Show output image cv.imshow('Black Background Image', sure_bg) # 黑色是背景 cv.waitKey() # 获取前景图 dist = cv.distanceTransform(opening, cv.DIST_L2, 3) # Normalize the distance image for range = {0.0, 1.0} # so we can visualize and threshold it cv.normalize(dist, dist, 0, 1.0, cv.NORM_MINMAX) cv.imshow('Distance Transform Image', dist) _, dist = cv.threshold(dist, 0.2, 1.0, cv.THRESH_BINARY) # Dilate a bit the dist image kernel1 = np.ones((3, 3), dtype=np.uint8) dist = cv.dilate(dist, kernel1) cv.imshow('Peaks', dist) # 构建初始markers dist_8u = dist.astype('uint8') # Find total markers contours, _ = cv.findContours(dist_8u, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE) # 创建即将应用分水岭算法的标记图像 markers = np.zeros(dist.shape, dtype=np.int32) # 标记前景 for i in range(len(contours)): cv.drawContours(markers, contours, i, (i + 1), -1) # 轮廓标记从1开始 # 标记背景 cv.circle(markers, (5, 5), 3, 255, -1) # 此处背景标记为255 print("before watershed: ", np.unique(markers)) # 0表示不确定标记区域 # 可视化markers markers_8u = (markers * 10).astype('uint8') cv.imshow('Markers', markers_8u) cv.waitKey() # 应用分水岭分割算法 markers = cv.watershed(src, markers) print("after watershed: ", np.unique(markers)) # -1表示边界 # mark = np.zeros(markers.shape, dtype=np.uint8) mark = markers.astype('uint8') mark = cv.bitwise_not(mark) # uncomment this if you want to see how the mark # image looks like at that point # cv.imshow('Markers_v2', mark) # Generate random colors colors = [] for contour in contours: colors.append((rng.randint(0, 256), rng.randint(0, 256), rng.randint(0, 256))) # Create the result image dst = np.zeros((markers.shape[0], markers.shape[1], 3), dtype=np.uint8) # Fill labeled objects with random colors for i in range(markers.shape[0]): for j in range(markers.shape[1]): index = markers[i, j] if index > 0 and index <= len(contours): # -1表示边界, 255表示背景 dst[i, j, :] = colors[index - 1] # Visualize the final image cv.imshow('Final Result', dst) cv.waitKey()
结果展示:
2.3 Python实现分水岭分割(2)
import cv2 as cv import numpy as np import argparse import random as rng def process_img2(img): img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) img_gray = cv2.GaussianBlur(img_gray, (5, 5), 0.1) img_gray = cv2.medianBlur(img_gray, 5) _, image_binary = cv2.threshold(img_gray, 0, 255, cv2.THRESH_OTSU + cv2.THRESH_BINARY) kernel = np.ones((7, 7), np.uint8) # sure_bg = cv.morphologyEx(image_binary, cv.MORPH_CLOSE, kernel, iterations=3) sure_bg = cv.dilate(image_binary, kernel, iterations=2) sure_bg = cv.bitwise_not(sure_bg) element = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3)) image_binary = cv2.morphologyEx(image_binary, cv2.MORPH_OPEN, element) imageSC = cv2.distanceTransform(image_binary, cv2.DIST_L2, 5) imageSC = imageSC.astype(np.uint8) imageSC = cv2.normalize(imageSC, 0, 255, cv2.NORM_MINMAX) _, imageSC = cv2.threshold(imageSC, 0, 255, cv2.THRESH_OTSU + cv2.THRESH_BINARY) return imageSC, sure_bg rng.seed(12345) imgPath = "HFOUG.jpg" src = cv.imread(imgPath) shifted = cv2.pyrMeanShiftFiltering(src, 7, 15) if src is None: print('Could not open or find the image:') # print('Could not open or find the image:', args.input) exit(0) # Show source image cv.imshow('Source Image', src) cv.waitKey() opening, sure_bg = process_img2(shifted) # Show output image cv.imshow('Background Image', sure_bg) # 背景 cv.waitKey() # 获取前景图 dist = cv.distanceTransform(opening, cv.DIST_L2, 3) # Normalize the distance image for range = {0.0, 1.0} # so we can visualize and threshold it cv.normalize(dist, dist, 0, 1.0, cv.NORM_MINMAX) cv.imshow('Distance Transform Image', dist) _, dist = cv.threshold(dist, 0.3, 1.0, cv.THRESH_BINARY) # Dilate a bit the dist image kernel1 = np.ones((3, 3), dtype=np.uint8) dist = cv.dilate(dist, kernel1) cv.imshow('Peaks', dist) # 构建初始markers dist_8u = dist.astype('uint8') # Find total markers contours, _ = cv.findContours(dist_8u, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE) # 创建即将应用分水岭算法的标记图像 # markers = np.zeros(dist.shape, dtype=np.int32) markers = sure_bg.copy().astype(np.int32) # 标记前景 for i in range(len(contours)): cv.drawContours(markers, contours, i, (i + 1), -1) # 轮廓标记从1开始 # 标记背景 # cv.circle(markers, (5, 5), 3, 255, -1) # 此处背景标记为255 # 可视化markers print("before watershed: ", np.unique(markers)) # 0表示不确定标记区域 markers_8u = (markers * 10).astype('uint8') cv.imshow('Markers', markers_8u) # 应用分水岭分割算法 markers = cv.watershed(src, markers) print("after watershed: ", np.unique(markers)) # -1表示边界 # mark = np.zeros(markers.shape, dtype=np.uint8) mark = markers.astype('uint8') mark = cv.bitwise_not(mark) cv.imshow('Markers_v2', mark) # Generate random colors colors = [] for contour in contours: colors.append((rng.randint(0, 256), rng.randint(0, 256), rng.randint(0, 256))) # Create the result image dst = np.zeros((markers.shape[0], markers.shape[1], 3), dtype=np.uint8) # Fill labeled objects with random colors for i in range(markers.shape[0]): for j in range(markers.shape[1]): index = markers[i, j] if index > 0 and index <= len(contours): # -1表示边界, 255表示背景 dst[i, j, :] = colors[index - 1] # Visualize the final image cv.imshow('Final Result', dst) cv.waitKey(0) cv2.destroyAllWindows()
结果展示:
加载全部内容