亲宝软件园·资讯

展开

MySQL COUNT

GreatSQL​​​​​​​ 人气:0

前言

在实际开发过程中,统计一个表的数据量是经常遇到的需求,用来统计数据库表的行数都会使用COUNT(*)COUNT(1)或者COUNT(字段),但是表中的记录越来越多,使用COUNT(*)也会变得越来越慢,今天我们就来分析一下COUNT(*)的性能到底如何。

1.COUNT(1)、COUNT(*)与COUNT(字段)哪个更快?

执行效果:

实验分析

本文测试使用的环境:

[root@zhyno1 ~]# cat /etc/system-release
CentOS Linux release 7.9.2009 (Core)

[root@zhyno1 ~]# uname -a
Linux zhyno1 3.10.0-1160.62.1.el7.x86_64 #1 SMP Tue Apr 5 16:57:59 UTC 2022 x86_64 x86_64 x86_64 GNU/Linux

测试数据库采用的是(存储引擎采用InnoDB,其它参数默认):

(Mon Jul 25 09:41:39 2022)[root@GreatSQL][(none)]>select version();
+-----------+
| version() |
+-----------+
| 8.0.25-16 |
+-----------+
1 row in set (0.00 sec)

实验开始:

#首先我们创建一个实验表

CREATE TABLE test_count (
  `id` int(10) NOT NULL AUTO_INCREMENT PRIMARY KEY,
  `name` varchar(20) NOT NULL,
  `salary` int(1) NOT NULL,
  KEY `idx_salary` (`salary`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

#插入1000W条数据
DELIMITER //
CREATE PROCEDURE insert_1000w()
BEGIN
    DECLARE i INT;
    SET i=1;
    WHILE i<=10000000 DO
        INSERT INTO test_count(name,salary) VALUES('KAiTO',1);
        SET i=i+1;
    END WHILE;
END//
DELIMITER ;
#执行存储过程
call insert_1000w();

接下来我们分别来实验一下:

COUNT(1)花费了4.19秒

(Sat Jul 23 22:56:04 2022)[root@GreatSQL][test]>select count(1) from test_count;
+----------+
| count(1) |
+----------+
| 10000000 |
+----------+
1 row in set (4.19 sec)

COUNT(*)花费了4.16秒

(Sat Jul 23 22:57:41 2022)[root@GreatSQL][test]>select count(*) from test_count;
+----------+
| count(*) |
+----------+
| 10000000 |
+----------+
1 row in set (4.16 sec)

COUNT(字段)花费了4.23秒

(Sat Jul 23 22:58:56 2022)[root@GreatSQL][test]>select count(id) from test_count;
+-----------+
| count(id) |
+-----------+
|  10000000 |
+-----------+
1 row in set (4.23 sec)

我们可以再来测试一下执行计划

COUNT(*)

(Sat Jul 23 22:59:16 2022)[root@GreatSQL][test]>explain select count(*) from test_count;
+----+-------------+------------+------------+-------+---------------+------------+---------+------+---------+----------+-------------+
| id | select_type | table      | partitions | type  | possible_keys | key        | key_len | ref  | rows    | filtered | Extra       |
+----+-------------+------------+------------+-------+---------------+------------+---------+------+---------+----------+-------------+
|  1 | SIMPLE      | test_count | NULL       | index | NULL          | idx_salary | 4       | NULL | 9980612 |   100.00 | Using index |
+----+-------------+------------+------------+-------+---------------+------------+---------+------+---------+----------+-------------+
1 row in set, 1 warning (0.01 sec)

(Sat Jul 23 22:59:48 2022)[root@GreatSQL][test]>show warnings;
+-------+------+-----------------------------------------------------------------------+
| Level | Code | Message                                                               |
+-------+------+-----------------------------------------------------------------------+
| Note  | 1003 | /* select#1 */ select count(0) AS `count(*)` from `test`.`test_count` |
+-------+------+-----------------------------------------------------------------------+
1 row in set (0.00 sec)

COUNT(1)

(Sat Jul 23 23:12:45 2022)[root@GreatSQL][test]>explain select count(1) from test_count;
+----+-------------+------------+------------+-------+---------------+------------+---------+------+---------+----------+-------------+
| id | select_type | table      | partitions | type  | possible_keys | key        | key_len | ref  | rows    | filtered | Extra       |
+----+-------------+------------+------------+-------+---------------+------------+---------+------+---------+----------+-------------+
|  1 | SIMPLE      | test_count | NULL       | index | NULL          | idx_salary | 4       | NULL | 9980612 |   100.00 | Using index |
+----+-------------+------------+------------+-------+---------------+------------+---------+------+---------+----------+-------------+
1 row in set, 1 warning (0.00 sec)

(Sat Jul 23 23:13:02 2022)[root@GreatSQL][test]>show warnings;
+-------+------+-----------------------------------------------------------------------+
| Level | Code | Message                                                               |
+-------+------+-----------------------------------------------------------------------+
| Note  | 1003 | /* select#1 */ select count(1) AS `count(1)` from `test`.`test_count` |
+-------+------+-----------------------------------------------------------------------+
1 row in set (0.00 sec)

COUNT(字段)

(Sat Jul 23 23:13:14 2022)[root@GreatSQL][test]>explain select count(id) from test_count;
+----+-------------+------------+------------+-------+---------------+------------+---------+------+---------+----------+-------------+
| id | select_type | table      | partitions | type  | possible_keys | key        | key_len | ref  | rows    | filtered | Extra       |
+----+-------------+------------+------------+-------+---------------+------------+---------+------+---------+----------+-------------+
|  1 | SIMPLE      | test_count | NULL       | index | NULL          | idx_salary | 4       | NULL | 9980612 |   100.00 | Using index |
+----+-------------+------------+------------+-------+---------------+------------+---------+------+---------+----------+-------------+
1 row in set, 1 warning (0.00 sec)

(Sat Jul 23 23:13:29 2022)[root@GreatSQL][test]>show warnings;
+-------+------+-----------------------------------------------------------------------------------------------+
| Level | Code | Message                                                                                       |
+-------+------+-----------------------------------------------------------------------------------------------+
| Note  | 1003 | /* select#1 */ select count(`test`.`test_count`.`id`) AS `count(id)` from `test`.`test_count` |
+-------+------+-----------------------------------------------------------------------------------------------+
1 row in set (0.00 sec)

需要注意的是COUNT里如果是非主键字段的话

(Tue Jul 26 14:01:57 2022)[root@GreatSQL][test]>explain select count(name) from test_count where id <100 ;
+----+-------------+------------+------------+-------+---------------+---------+---------+------+------+----------+-------------+
| id | select_type | table      | partitions | type  | possible_keys | key     | key_len | ref  | rows | filtered | Extra       |
+----+-------------+------------+------------+-------+---------------+---------+---------+------+------+----------+-------------+
|  1 | SIMPLE      | test_count | NULL       | range | PRIMARY       | PRIMARY | 4       | NULL |   99 |   100.00 | Using where |
+----+-------------+------------+------------+-------+---------------+---------+---------+------+------+----------+-------------+
1 row in set, 1 warning (0.00 sec)

实验结果

实验结论

总结:COUNT(*)=COUNT(1)>COUNT(id)

MySQL的官方文档也有说过:

InnoDB handles SELECT COUNT(*) and SELECT COUNT(1) operations in the same way. There is no performance difference

翻译: InnoDB以相同的方式处理SELECT COUNT(*)和SELECT COUNT(1)操作。没有性能差异

所以说明了对于COUNT(1)或者是COUNT(*),MySQL的优化其实是完全一样的,没有存在没有性能的差异。

但是建议使用COUNT(*),因为这是MySQL92定义的标准统计行数的语法。

2.COUNT(*)与TABLES_ROWS

在InnoDB中,MySQL数据库每个表占用的空间、表记录的行数可以打开MySQL的information_schema数据库。在该库中有一个TABLES表,这个表主要字段分别是:

TABLE_ROWS用于显示这个表当前有多少行,这个命令执行挺快的,那这个TABLE_ROWS能代替count(*)吗?

我们用TABLES_ROWS查询一下表记录条数:

(Sat Jul 23 23:15:14 2022)[root@GreatSQL][test]>SELECT TABLE_ROWS
    -> FROM INFORMATION_SCHEMA.TABLES
    -> WHERE TABLE_NAME = 'test_count';
+------------+
| TABLE_ROWS |
+------------+
|    9980612 |
+------------+
1 row in set (0.03 sec)

可以看到,记录的条数并不准确,因为InnoDB引擎下TABLES_ROWS行计数仅是大概估计值。

3.COUNT(*)是怎么样执行的?

首先要明确的是,MySQL有多种不同引擎,在不同的引擎中,count(*)有不同的实现方式,本文主要介绍的是在InnoDB引擎上的执行流程

在InnoDB存储引擎中,count(*)函数是先从内存中读取表中的数据到内存缓冲区,然后扫描全表获得行记录数的。简单来说就是全表扫描,一个循环解决问题,循环内: 先读取一行,再决定该行是否计入count循环内是一行一行进行计数处理的。

在MyISAM引擎中是把一个表的总行数存在了磁盘上,因此执行count(*)的时候会直接返回这个数,效率很高。

之所以InnoDB 不跟 MyISAM一样把数字存起来,是因为即使是在同一个时刻的多个查询,由于多版本并发控制(MVCC)的原因,InnoDB表应该返回多少行也是不确定的。而且不论是在事务支持、并发能力还是在数据安全方面,InnoDB都优于MyISAM。

虽然如此,InnoDB对于count(*)操作还是做了优化的。InnoDB是索引组织表,主键索引树的叶子节点是数据,而普通索引树的叶子节点是主键值。所以,普通索引树比主键索引树小很多。对于count(*)这样的操作,遍历哪个索引树得到的结果逻辑上都是一样的。因此,MySQL 优化器会找到最小的那棵树来遍历。

需要注意的是我们在这篇文章里讨论的是没有过滤条件的count(*),如果加了WHERE条件的话,MyISAM引擎的表也是不能返回得这么快的。

4.总结

加载全部内容

相关教程
猜你喜欢
用户评论