亲宝软件园·资讯

展开

Java Bellman-Ford算法

chengqiuming 人气:0

一 点睛

如果遇到负权边,则在没有负环(回路的权值之和为负)存在时,可以采用 Bellman-Ford 算法求解最短路径。该算法的优点是变的权值可以是负数、实现简单,缺点是时间复杂度过高。但是该算法可以进行若干种优化,以提高效率。

Bellman-Ford 算法与 Dijkstra 算法类似,都是以松弛操作作为基础。Dijkstra 算法以贪心法选取未被处理的具有最小权值的节点,然后对其进行松弛操作;而 Bellman-Ford 算法对所有边都进行松弛操作,共 n-1 次。因为负环可以无限制地减少最短路径长度,所以吐过发现第 n 次操作仍然可松弛,则一定存在负环。Bellman-Ford 算法最长运行时间为O(nm),其中 n 和 m 分别是节点数和边数。

二 算法步骤

1 数据结构

因为需要利用边进行松弛,因此采用边集数组存储。每条边都有三个域:两个端点a和b,以及边权w

2 松弛操作

对所有的边 j(a,b,w),如果 dis[e[j]b]>dis[e[j].a]+e[j].w,则松弛,另 dis[e[j]b]=dis[e[j].a]+e[j].w。其中,dis[v] 表示从源点到节点 v 的最短路径长度。

3 重复松弛操作 n-1 次

4 负环判断

再执行一次松弛操作,如果仍然可以松弛,则说明右负环。

三 算法实现

package graph.bellmanford;
 
import java.util.Scanner;
 
public class BellmanFord {
    static node e[] = new node[210];
    static int dis[] = new int[110];
    static int n;
    static int m;
    static int cnt = 0;
 
    static {
        for (int i = 0; i < e.length; i++) {
            e[i] = new node();
        }
    }
 
    static void add(int a, int b, int w) {
        e[cnt].a = a;
        e[cnt].b = b;
        e[cnt++].w = w;
    }
 
    static boolean bellman_ford(int u) { // 求源点 u 到其它顶点的最短路径长度,判负环
        for (int i = 0; i < dis.length; i++) {
            dis[i] = 0x3f;
        }
        dis[u] = 0;
        for (int i = 1; i < n; i++) { // 执行 n-1 次
            boolean flag = false;
            for (int j = 0; j < m; j++) // 边数 m 或 cnt
                if (dis[e[j].b] > dis[e[j].a] + e[j].w) {
                    dis[e[j].b] = dis[e[j].a] + e[j].w;
                    flag = true;
                }
            if (!flag)
                return false;
        }
        for (int j = 0; j < m; j++) // 再执行 1 次,还能松弛说明有环
            if (dis[e[j].b] > dis[e[j].a] + e[j].w)
                return true;
        return false;
    }
 
 
    static void print() { // 输出源点到其它节点的最短距离
        System.out.println("最短距离:");
        for (int i = 1; i <= n; i++)
            System.out.print(dis[i] + " ");
        System.out.println();
    }
 
    public static void main(String[] args) {
        int a, b, w;
        Scanner scanner = new Scanner(System.in);
        n = scanner.nextInt();
        m = scanner.nextInt();
        for (int i = 0; i < m; i++) {
            a = scanner.nextInt();
            b = scanner.nextInt();
            w = scanner.nextInt();
            add(a, b, w);
        }
        if (bellman_ford(1)) // 判断负环
            System.out.println("有负环!");
        else
            print();
    }
}
 
class node {
    int a;
    int b;
    int w;
}

四 测试

1 没有负环的测试

2 有负环的测试

加载全部内容

相关教程
猜你喜欢
用户评论