pyecharts flask框架
程序媛小庄 人气:0介绍
本文主要介绍如何在Flask框架中使用pyecharts
,关于Flask框架使用这里不做具体说明~
Flask模板渲染
首先需要创建一个flask项目,flask项目对目录结构要求不高,但是如果是前后端混合项目的话,模板文件必须存放在templates
文件夹下,否则视图函数返回模板文件时会提示找不到对应的文件。下面是flask项目的简单目录结构:
. ├── server.py └── templates
下述代码是server.py
中的示例的代码:
from flask import Flask from jinja2 import Markup, Environment, FileSystemLoader from pyecharts import options as opts from pyecharts.charts import Bar app = Flask(__name__, static_folder="templates") def bar_base() -> Bar: c = ( Bar() .add_xaxis(["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]) .add_yaxis("商家A", [5, 20, 36, 10, 75, 90]) .add_yaxis("商家B", [15, 25, 16, 55, 48, 8]) .set_global_opts(title_opts=opts.TitleOpts(title="Bar-基本示例", subtitle="我是副标题")) ) return c @app.route("/") def index(): c = bar_base() return Markup(c.render_embed()) if __name__ == "__main__": app.run()
运行上述代码,使用浏览器打开http://127.0.0.1:5000 即可访问服务,具体效果如下图所示:
Flask前后端分离
创建flask项目和上述文件目录保持一致,前后端分离的情况下,就需要后端将pyecharts生成的图表返回给前端,方法就是可以将图表生成到一个html文件中,然后返回给前端即可。
需要新建 HTML 文件保存位于项目根目录的 templates 文件夹,这里以如下 index.html 为例. 主要用到了 jquery
和 pyecharts
管理的 echarts.min.js
依赖。
下述是index.html
中的代码:
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title>Awesome-pyecharts</title> <script src="https://cdn.bootcss.com/jquery/3.0.0/jquery.min.js"></script> <script type="text/javascript" src="https://assets.pyecharts.org/assets/echarts.min.js"></script> </head> <body> <div id="bar" style="width:1000px; height:600px;"></div> <script> $( function () { var chart = echarts.init(document.getElementById('bar'), 'white', {renderer: 'canvas'}); $.ajax({ type: "GET", url: "http://127.0.0.1:5000/barChart", dataType: 'json', success: function (result) { chart.setOption(result); } }); } ) </script> </body> </html>
然后就需要编写后端的代码了,包括flask服务以及pyecharts
生成图表,目录结构和模板渲染一致,这里需要注意一个问题,目前由于 json 数据类型的问题,无法将 pyecharts 中的 JSCode 类型的数据转换成 json 数据格式返回到前端页面中使用。因此在使用前后端分离的情况下尽量避免使用 JSCode 进行画图。
下面是server.py
中的后端代码:
from random import randrange from flask import Flask, render_template from pyecharts import options as opts from pyecharts.charts import Bar app = Flask(__name__, static_folder="templates") def bar_base() -> Bar: c = ( Bar() .add_xaxis(["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]) .add_yaxis("商家A", [randrange(0, 100) for _ in range(6)]) .add_yaxis("商家B", [randrange(0, 100) for _ in range(6)]) .set_global_opts(title_opts=opts.TitleOpts(title="Bar-基本示例", subtitle="我是副标题")) ) return c @app.route("/") def index(): return render_template("index.html") @app.route("/barChart") def get_bar_chart(): c = bar_base() return c.dump_options_with_quotes() if __name__ == "__main__": app.run()
同样运行该项目,使用浏览器打开 http://127.0.0.1:5000 即可访问服务。
总结
两篇文章只是介绍了pyecharts
模块的一些简单使用,在官方文档中还有很多进阶使用,经常进行图表分析的开发人员们可以参考官方文档进行学习。
加载全部内容