PyTorch torch.nn.Linear详解
大黑山修道 人气:3前言
在学习transformer时,遇到过非常频繁的nn.Linear()函数,这里对nn.Linear进行一个详解。
参考:http://pytorch.org/docs/stable/_modules/torch/nn/modules/linear.html
1. nn.Linear的原理:
从名称就可以看出来,nn.Linear表示的是线性变换,原型就是初级数学里学到的线性函数:y=kx+b
不过在深度学习中,变量都是多维张量,乘法就是矩阵乘法,加法就是矩阵加法,因此nn.Linear()运行的真正的计算就是:
output = weight @ input + bias
@: 在python中代表矩阵乘法
input: 表示输入的Tensor,可以有多个维度
weights: 表示可学习的权重,shape=(output_feature,in_feature)
bias: 表示科学习的偏置,shape=(output_feature)
in_feature: nn.Linear 初始化的第一个参数,即输入Tensor最后一维的通道数
out_feature: nn.Linear 初始化的第二个参数,即返回Tensor最后一维的通道数
output: 表示输入的Tensor,可以有多个维度
2. nn.Linear的使用:
常用头文件:import torch.nn as nn
nn.Linear()的初始化:
nn.Linear(in_feature,out_feature,bias)
in_feature: int型, 在forward中输入Tensor最后一维的通道数
out_feature: int型, 在forward中输出Tensor最后一维的通道数
bias: bool型, Linear线性变换中是否添加bias偏置
nn.Linear()的执行:(即执行forward函数)
out=nn.Linear(input)
input: 表示输入的Tensor,可以有多个维度
output: 表示输入的Tensor,可以有多个维度
举例:
2维 Tensor
m = nn.Linear(20, 40) input = torch.randn(128, 20) output = m(input) print(output.size()) # [(128,40])
4维 Tensor:
m = nn.Linear(128, 64) input = torch.randn(512, 3,128,128) output = m(input) print(output.size()) # [(512, 3,128,64))
3. nn.Linear的源码定义:
import math import torch import torch.nn as nn from torch import Tensor from torch.nn.parameter import Parameter, UninitializedParameter from torch.nn import functional as F from torch.nn import init # from .lazy import LazyModuleMixin class myLinear(nn.Module): r"""Applies a linear transformation to the incoming data: :math:`y = xA^T + b` This module supports :ref:`TensorFloat32<tf32_on_ampere>`. Args: in_features: size of each input sample out_features: size of each output sample bias: If set to ``False``, the layer will not learn an additive bias. Default: ``True`` Shape: - Input: :math:`(*, H_{in})` where :math:`*` means any number of dimensions including none and :math:`H_{in} = \text{in\_features}`. - Output: :math:`(*, H_{out})` where all but the last dimension are the same shape as the input and :math:`H_{out} = \text{out\_features}`. Attributes: weight: the learnable weights of the module of shape :math:`(\text{out\_features}, \text{in\_features})`. The values are initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`, where :math:`k = \frac{1}{\text{in\_features}}` bias: the learnable bias of the module of shape :math:`(\text{out\_features})`. If :attr:`bias` is ``True``, the values are initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where :math:`k = \frac{1}{\text{in\_features}}` Examples:: >>> m = nn.Linear(20, 30) >>> input = torch.randn(128, 20) >>> output = m(input) >>> print(output.size()) torch.Size([128, 30]) """ __constants__ = ['in_features', 'out_features'] in_features: int out_features: int weight: Tensor def __init__(self, in_features: int, out_features: int, bias: bool = True, device=None, dtype=None) -> None: factory_kwargs = {'device': device, 'dtype': dtype} super(myLinear, self).__init__() self.in_features = in_features self.out_features = out_features self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) if bias: self.bias = Parameter(torch.empty(out_features, **factory_kwargs)) else: self.register_parameter('bias', None) self.reset_parameters() def reset_parameters(self) -> None: # Setting a=sqrt(5) in kaiming_uniform is the same as initializing with # uniform(-1/sqrt(in_features), 1/sqrt(in_features)). For details, see # https://github.com/pytorch/pytorch/issues/57109 print("333") init.kaiming_uniform_(self.weight, a=math.sqrt(5)) if self.bias is not None: fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight) bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0 init.uniform_(self.bias, -bound, bound) def forward(self, input: Tensor) -> Tensor: print("111") print("self.weight.shape=(", ) return F.linear(input, self.weight, self.bias) def extra_repr(self) -> str: print("www") return 'in_features={}, out_features={}, bias={}'.format( self.in_features, self.out_features, self.bias is not None ) # m = myLinear(20, 40) # input = torch.randn(128, 40, 20) # output = m(input) # print(output.size()) m = myLinear(128, 64) input = torch.randn(512, 3,128,128) output = m(input) print(output.size()) # [(512, 3,128,64))
4. nn.Linear的官方源码:
import math import torch from torch import Tensor from torch.nn.parameter import Parameter, UninitializedParameter from .. import functional as F from .. import init from .module import Module from .lazy import LazyModuleMixin class Identity(Module): r"""A placeholder identity operator that is argument-insensitive. Args: args: any argument (unused) kwargs: any keyword argument (unused) Shape: - Input: :math:`(*)`, where :math:`*` means any number of dimensions. - Output: :math:`(*)`, same shape as the input. Examples:: >>> m = nn.Identity(54, unused_argument1=0.1, unused_argument2=False) >>> input = torch.randn(128, 20) >>> output = m(input) >>> print(output.size()) torch.Size([128, 20]) """ def __init__(self, *args, **kwargs): super(Identity, self).__init__() def forward(self, input: Tensor) -> Tensor: return input class Linear(Module): r"""Applies a linear transformation to the incoming data: :math:`y = xA^T + b` This module supports :ref:`TensorFloat32<tf32_on_ampere>`. Args: in_features: size of each input sample out_features: size of each output sample bias: If set to ``False``, the layer will not learn an additive bias. Default: ``True`` Shape: - Input: :math:`(*, H_{in})` where :math:`*` means any number of dimensions including none and :math:`H_{in} = \text{in\_features}`. - Output: :math:`(*, H_{out})` where all but the last dimension are the same shape as the input and :math:`H_{out} = \text{out\_features}`. Attributes: weight: the learnable weights of the module of shape :math:`(\text{out\_features}, \text{in\_features})`. The values are initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`, where :math:`k = \frac{1}{\text{in\_features}}` bias: the learnable bias of the module of shape :math:`(\text{out\_features})`. If :attr:`bias` is ``True``, the values are initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where :math:`k = \frac{1}{\text{in\_features}}` Examples:: >>> m = nn.Linear(20, 30) >>> input = torch.randn(128, 20) >>> output = m(input) >>> print(output.size()) torch.Size([128, 30]) """ __constants__ = ['in_features', 'out_features'] in_features: int out_features: int weight: Tensor def __init__(self, in_features: int, out_features: int, bias: bool = True, device=None, dtype=None) -> None: factory_kwargs = {'device': device, 'dtype': dtype} super(Linear, self).__init__() self.in_features = in_features self.out_features = out_features self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs)) if bias: self.bias = Parameter(torch.empty(out_features, **factory_kwargs)) else: self.register_parameter('bias', None) self.reset_parameters() def reset_parameters(self) -> None: # Setting a=sqrt(5) in kaiming_uniform is the same as initializing with # uniform(-1/sqrt(in_features), 1/sqrt(in_features)). For details, see # https://github.com/pytorch/pytorch/issues/57109 init.kaiming_uniform_(self.weight, a=math.sqrt(5)) if self.bias is not None: fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight) bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0 init.uniform_(self.bias, -bound, bound) def forward(self, input: Tensor) -> Tensor: return F.linear(input, self.weight, self.bias) def extra_repr(self) -> str: return 'in_features={}, out_features={}, bias={}'.format( self.in_features, self.out_features, self.bias is not None ) # This class exists solely to avoid triggering an obscure error when scripting # an improperly quantized attention layer. See this issue for details: # https://github.com/pytorch/pytorch/issues/58969 # TODO: fail fast on quantization API usage error, then remove this class # and replace uses of it with plain Linear class NonDynamicallyQuantizableLinear(Linear): def __init__(self, in_features: int, out_features: int, bias: bool = True, device=None, dtype=None) -> None: super().__init__(in_features, out_features, bias=bias, device=device, dtype=dtype) [docs]class Bilinear(Module): r"""Applies a bilinear transformation to the incoming data: :math:`y = x_1^T A x_2 + b` Args: in1_features: size of each first input sample in2_features: size of each second input sample out_features: size of each output sample bias: If set to False, the layer will not learn an additive bias. Default: ``True`` Shape: - Input1: :math:`(*, H_{in1})` where :math:`H_{in1}=\text{in1\_features}` and :math:`*` means any number of additional dimensions including none. All but the last dimension of the inputs should be the same. - Input2: :math:`(*, H_{in2})` where :math:`H_{in2}=\text{in2\_features}`. - Output: :math:`(*, H_{out})` where :math:`H_{out}=\text{out\_features}` and all but the last dimension are the same shape as the input. Attributes: weight: the learnable weights of the module of shape :math:`(\text{out\_features}, \text{in1\_features}, \text{in2\_features})`. The values are initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`, where :math:`k = \frac{1}{\text{in1\_features}}` bias: the learnable bias of the module of shape :math:`(\text{out\_features})`. If :attr:`bias` is ``True``, the values are initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`, where :math:`k = \frac{1}{\text{in1\_features}}` Examples:: >>> m = nn.Bilinear(20, 30, 40) >>> input1 = torch.randn(128, 20) >>> input2 = torch.randn(128, 30) >>> output = m(input1, input2) >>> print(output.size()) torch.Size([128, 40]) """ __constants__ = ['in1_features', 'in2_features', 'out_features'] in1_features: int in2_features: int out_features: int weight: Tensor def __init__(self, in1_features: int, in2_features: int, out_features: int, bias: bool = True, device=None, dtype=None) -> None: factory_kwargs = {'device': device, 'dtype': dtype} super(Bilinear, self).__init__() self.in1_features = in1_features self.in2_features = in2_features self.out_features = out_features self.weight = Parameter(torch.empty((out_features, in1_features, in2_features), **factory_kwargs)) if bias: self.bias = Parameter(torch.empty(out_features, **factory_kwargs)) else: self.register_parameter('bias', None) self.reset_parameters() def reset_parameters(self) -> None: bound = 1 / math.sqrt(self.weight.size(1)) init.uniform_(self.weight, -bound, bound) if self.bias is not None: init.uniform_(self.bias, -bound, bound) def forward(self, input1: Tensor, input2: Tensor) -> Tensor: return F.bilinear(input1, input2, self.weight, self.bias) def extra_repr(self) -> str: return 'in1_features={}, in2_features={}, out_features={}, bias={}'.format( self.in1_features, self.in2_features, self.out_features, self.bias is not None ) class LazyLinear(LazyModuleMixin, Linear): r"""A :class:`torch.nn.Linear` module where `in_features` is inferred. In this module, the `weight` and `bias` are of :class:`torch.nn.UninitializedParameter` class. They will be initialized after the first call to ``forward`` is done and the module will become a regular :class:`torch.nn.Linear` module. The ``in_features`` argument of the :class:`Linear` is inferred from the ``input.shape[-1]``. Check the :class:`torch.nn.modules.lazy.LazyModuleMixin` for further documentation on lazy modules and their limitations. Args: out_features: size of each output sample bias: If set to ``False``, the layer will not learn an additive bias. Default: ``True`` Attributes: weight: the learnable weights of the module of shape :math:`(\text{out\_features}, \text{in\_features})`. The values are initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`, where :math:`k = \frac{1}{\text{in\_features}}` bias: the learnable bias of the module of shape :math:`(\text{out\_features})`. If :attr:`bias` is ``True``, the values are initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where :math:`k = \frac{1}{\text{in\_features}}` """ cls_to_become = Linear # type: ignore[assignment] weight: UninitializedParameter bias: UninitializedParameter # type: ignore[assignment] def __init__(self, out_features: int, bias: bool = True, device=None, dtype=None) -> None: factory_kwargs = {'device': device, 'dtype': dtype} # bias is hardcoded to False to avoid creating tensor # that will soon be overwritten. super().__init__(0, 0, False) self.weight = UninitializedParameter(**factory_kwargs) self.out_features = out_features if bias: self.bias = UninitializedParameter(**factory_kwargs) def reset_parameters(self) -> None: if not self.has_uninitialized_params() and self.in_features != 0: super().reset_parameters() def initialize_parameters(self, input) -> None: # type: ignore[override] if self.has_uninitialized_params(): with torch.no_grad(): self.in_features = input.shape[-1] self.weight.materialize((self.out_features, self.in_features)) if self.bias is not None: self.bias.materialize((self.out_features,)) self.reset_parameters() # TODO: PartialLinear - maybe in sparse?
补充:许多细节需要声明
1)nn.Linear是一个类,使用时进行类的实例化
2)实例化的时候,nn.Linear需要输入两个参数,in_features为上一层神经元的个数,out_features为这一层的神经元个数
3)不需要定义w和b。所有nn.Module的子类,形如nn.XXX的层,都会在实例化的同时随机生成w和b的初始值。所以实例化之后,我们就可以调用属性weight和bias来查看生成的w和b。其中w是必然会生成的,b是我们可以控制是否要生成的。在nn.Linear类中,有参数bias,默认 bias = True。如果我们希望不拟合常量b,在实例化时将参数bias设置为False即可。
4)由于w和b是随机生成的,所以同样的代码多次运行后的结果是不一致的。如果我们希望控制随机性,则可以使用torch中的random类。如:torch.random.manual_seed(420) #人为设置随机数种子
5)由于不需要定义常量b,因此在特征张量中,不需要留出与常数项相乘的那一列,只需要输入特征张量。
6)输入层只有一层,并且输入层的结构(神经元的个数)由输入的特征张量X决定,因此在PyTorch中构筑神经网络时,不需要定义输入层。
7)实例化之后,将特征张量输入到实例化后的类中。
总结
加载全部内容