python读取csv文件
梧桐雪 人气:1csv文件是一种用,和换行符区分数据记录和字段的一种文件结构,可以用excel表格编辑,也可以用记事本编辑,是一种类excel的数据存储文件,也可以看成是一种数据库。pandas提供了pd.read_csv()方法可以读取其中的数据并且转换成DataFrame数据帧。python的强大之处就在于他可以把不同的数据库类型,比如txt/csv/.xls/.sql转换成统一的DataFrame格式然后进行统一的处理。真是做到了标准化。我们可以用以下代码来演示csv文件的读取操作。
import pandas as pd data1 = pd.read_csv('rating.csv') print(data1) print("************取消第一行作为表头*************") data2 = pd.read_csv('rating.csv',header=None) print(data2) print("************为各个字段取名**************") data3 = pd.read_csv('rating.csv',names=['user_id','book_id','rating']) print(data3) print("***********将某一字段设为索引***************") data3 = pd.read_csv('rating.csv', names=['user_id','book_id','rating'], index_col = "user_id") print(data3) print("************用sep参数设置分隔符**************") data4 = pd.read_csv('rating.csv', names=['user_id','book_id','rating'], sep=',') print(data4) print("************自动补全缺失数据为NaN**************") data5 = pd.read_csv('data.csv',header=None) print(data5)
输出的结果如下:
1 258 5
0 2 4081 4
1 2 260 5
2 2 9296 5
3 2 2318 3
4 2 26 4
5 2 315 3
6 2 33 4
7 2 301 5
************取消第一行作为表头*************
0 1 2
0 1 258 5
1 2 4081 4
2 2 260 5
3 2 9296 5
4 2 2318 3
5 2 26 4
6 2 315 3
7 2 33 4
8 2 301 5
************为各个字段取名**************
user_id book_id rating
0 1 258 5
1 2 4081 4
2 2 260 5
3 2 9296 5
4 2 2318 3
5 2 26 4
6 2 315 3
7 2 33 4
8 2 301 5
***********将某一字段设为索引***************
book_id rating
user_id
1 258 5
2 4081 4
2 260 5
2 9296 5
2 2318 3
2 26 4
2 315 3
2 33 4
2 301 5
************用sep参数设置分隔符**************
user_id book_id rating
0 1 258 5
1 2 4081 4
2 2 260 5
3 2 9296 5
4 2 2318 3
5 2 26 4
6 2 315 3
7 2 33 4
8 2 301 5
************自动补全缺失数据为NaN**************
0 1 2 3 4
0 1 2.0 3 4.0 5
1 6 7.0 8 NaN 10
2 11 NaN 13 14.0 15
[Finished in 4.5s]
对代码的具体解释,可以参考星号隔离bar中的注释。
加载全部内容