OpenCV Mask前景区域
SpikeKing 人气:0从灰度图像,根据阈值,切出多个前景区域,过滤面积太小的图像。
OpenCV的Python逻辑,clip_gray_patches
:
def clip_gray_patches(img_gray, ths=32, filter_percent=0.0005): """ 从灰度图像切出多个前景区域,阈值大于ths,过滤面积占比小于filter_percent的图像 @param img_gray: 灰度图像 @param ths: 前景阈值 @param filter_percent: 过滤面积 @return: patches list, 轮廓图像 """ # 根据thresh_val过滤mask ret, gray_mask = cv2.threshold(img_gray, ths, 1, 0) contours, hierarchy = cv2.findContours(gray_mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) img_area = get_image_size(img_gray) # 图像面积 img_copy = copy.copy(img_gray) img_patches = [] # 遍历全部轮廓 for cnt in contours: area = cv2.contourArea(cnt) if area / img_area < filter_percent: # 过滤小图像 continue # 将小patch的前景设置为255,背景设置为0 mask = np.zeros(img_gray.shape) cv2.drawContours(mask, [cnt], -1, 255, -1) mask = mask.astype(np.uint8) # 将原图,根据mask,贴入新图像中,再提取mask masked = cv2.add(img_gray, np.zeros(np.shape(img_gray), dtype=np.uint8), mask=mask) box = get_mask_box(mask) img_patch = get_cropped_patch(masked, box) img_patches.append(img_patch) img_copy = cv2.drawContours(img_copy, [cnt], -1, 255, 1) # 绘制边界 return img_patches, img_copy def get_image_size(img): """ 获取图像尺寸 """ h, w = img.shape[:2] return float(h * w) def get_mask_box(mask): """ mask的边框 """ import numpy as np y, x = np.where(mask) x_min = np.min(x) x_max = np.max(x) y_min = np.min(y) y_max = np.max(y) box = [x_min, y_min, x_max, y_max] return box def get_cropped_patch(img, box): """ 获取Img的Patch :param img: 图像 :param box: [x_min, y_min, x_max, y_max] :return 图像块 """ h, w = img.shape[:2] x_min = int(max(0, box[0])) y_min = int(max(0, box[1])) x_max = int(min(box[2], w)) y_max = int(min(box[3], h)) if len(img.shape) == 3: img_patch = img[y_min:y_max, x_min:x_max, :] else: img_patch = img[y_min:y_max, x_min:x_max] return img_patch
输入的灰度图像:
输出图像:
加载全部内容