亲宝软件园·资讯

展开

python multiprosessing

​ HZ在掘金   ​ 人气:0

1、二者的区别

apply(): 

apply_async():

2、apply()

import time
import multiprocessing
def doIt(num):
    print("Process num is : %s" % num)
    time.sleep(1)
    print('process  %s end' % num)

if __name__ == '__main__':
    print('mainProcess start')

    #记录一下开始执行的时间
    start_time = time.time()
    # 创建一个进程池,允许最多可以有3个子进程可以同时执行。
    pool = multiprocessing.Pool(3)

    print('Child start')
    for i in range(3):
         pool.apply(doIt,[i])
    print('mainProcess done time:%s s' % (time.time() - start_time))

结果如下所示:

从结果中我们可以看到,主进程开始执行之后, 创建的三个子进程也随即开始执行, 后面的主进程被阻塞。而且三个子进程是一个接一个按顺序地执行, 等到子进程全部执行完毕之后, 后面的主进程才会继续执行, 打印出最后一句。所以,apply()函数果然是可以堵塞主进程,而且是非异步的。

3、apply_async()

顾名思义,async就是异步的意思。接下来是使用apply_async(), 只需要把上面的代码使用 apply()的地方改成apply_async() 即可, 代码不再贴上
我们来看看运行结果, 可以看出来, 截图的第一句是上一个程序(也就是apply()函数)的执行消耗时间, 
最后一句是使用apply_async()所消耗的时间, 在这里, 主进程没有被阻塞, 验证了apply_async()是非阻塞主进程的, 子进程没有执行, 验证了他是根据系统调度完成的,

为什么会这样呢?

原因是, 进程的切换时操作系统控制的, 我们首先运行的是主进程, 而CPU运行得又很快, 快到还没等系统调度到子线程, 主进程就已经运行完毕了, 并且退出程序. 所以子进程就没有运行了.

那么我们在使用apply_async()函数是不是就不能执行子进程呢?肯定可以啊!!!小老弟,想啥呢??还记得join()的作用吗?他可以阻塞主进程, 等待所有子进程结束之后再运行,join()就是告诉主进程老子要运行子进程了,你先等等。 

import time
import multiprocessing

def doIt(num):
    print("Process num is : %s" % num)
    time.sleep(1)
    print('process  %s end' % num)
if __name__ == '__main__':
    print('mainProcess start')

    #记录一下开始执行的时间
    start_time = time.time()
    # 创建一个进程池,最大允许3个子进程同时执行。
    pool = multiprocessing.Pool(3)
    print('Child start')
    for i in range(3):
        pool.apply_async(doIt,[i])
    pool.close()
    pool.join()
    print('mainProcess done time:%s s' % (time.time() - start_time))

结果如下所示:

我们看看加入这两句的运行结果, 我们可以看到即使是使用了非阻塞主进程的apply_async() 也能让子进程运行完毕之后再执行主进程了。
CPU在执行第一个子进程的时候, 还没等第一个子进程结束, 系统调度到了按顺序调度到了第二个子进程, 以此类推, 一直调度运行子进程, 一个接一个地结束子进程的运行, 最后运行主进程, 而且我们可以看到使用apply_async()的执行效力会更高,看一下他们各自执行结果最后一句的执行消耗时间就知道了, 这也是官方推荐我们使用apply_async()的主要原因吧

加载全部内容

相关教程
猜你喜欢
用户评论