亲宝软件园·资讯

展开

Python识别图片文字

J哥 人气:9

一、背景

大家好,我是J哥。

也许你还记得,前不久复旦大学一博士生写了130行Python代码,批量识别核酸截图内容的故事。当时还被人民日报公众号报道出来,夸赞用所学贡献青春力量!

其实,批量文字识别(OCR)是Python办公自动化的基本操作,应用在我们工作生活中的方方面面,比如车牌识别、证件识别、银行卡识别、票据识别等等。

PythonOCR第三方库非常多,比如easyocrPaddleOCRcnocr等等。当然,直接调用百度API也是可以的,不过超过一定限额后要收费,因此本文主要以开源免费的easyocr来进行介绍。

二、需求

本文以证件识别为例,我网上找了3张虚拟SFZ来实验:

运用easyocr进行识别并保存为Excel,效果如下:

三、实战

1.安装模块

Python中使用 easyocr非常简单,只要使用pip命令安装easyocr 即可(建议使用清华源,否则安装会比较慢)。

pip install easyocr

不过 easyocr 的深度学习算法依赖于另一个著名的第三方模块 pytorch,图形处理部分则会用到 opencvPillow 等,所以还需要确保自己电脑上已经安装这些基础模块。

2.识别一张图片

1.easyocr识别图片代码非常简洁,只需要创建一个easyocr.Reader类对象,指定以下两个常用参数:

2.调用Reader对象的readtext方法,将图片中所有文字读入一个列表并返回。

'''
公众号:菜J学Python
作者:J哥
'''
# 导入模块
import easyocr
# 图片路径
image = './id_card/1.jpg'
# 创建ocr的reader对象,识别中英文
ocr = easyocr.Reader(['ch_sim', 'en'],gpu=False)
# 识别图片文字
content = ocr.readtext(image)
print(content)

识别结果如下:

[([[39, 31], [207, 31], [207, 67], [39, 67]], '姓  名  韦小宝', 0.8973890994570185), ([[40, 82], [159, 82], [159, 119], [40, 119]], '性  别  男', 0.9799311480828728), ([[178, 86], [272, 86], [272, 116], [178, 116]], '民 族汉', 0.5456928014755249), ([[40, 131], [100, 131], [100, 161], [40, 161]], '出  生', 0.5362269878387451), ([[114, 134], [240, 134], [240, 162], [114, 162]], '1654 年12', 0.6952526392609933), ([[266, 134], [322, 134], [322, 162], [266, 162]], '20日', 0.31329770168285426), ([[42, 181], [395, 181], [395, 213], [42, 213]], '住  址  北京市东城区景山前街4号', 0.48138251996753667), ([[112, 222], [256, 222], [256, 254], [112, 254]], '紫禁城敬事房', 0.9732440311960702), ([[44, 307], [195, 307], [195, 337], [44, 337]], '公民SFZ号码', 0.612808391503521), ([[212, 308], [526, 308], [526, 334], [212, 334]], '112044165412202438', 0.7003081027071493)]

readtext 返回的列表中,每个元素都是一个元组,内含三个信息:位置、文字、置信度。我们可以在调用readtext时指定一个参数 detail=0,从而只返回文字内容。于是修改后代码和效果如下:

import easyocr
image = './id_card/1.jpg'
ocr = easyocr.Reader(['ch_sim', 'en'],gpu=False)
content = ocr.readtext(image,detail=0)
print(content)

['姓  名  韦小宝', '性  别  男', '民 族汉', '出  生', '1654 年12', '20日', '住  址  北京市东城区景山前街4号', '紫禁城敬事房', '公民SFZ号码', '112044165412202438']

3.批量识别图片

批量识别图片无非就是遍历图片文件夹,这里用到了os.listdir()方法以返回文件列表。然后用ocr.readtext()去识别每一张图片文字内容,接着通过字符串切片来获取姓名、性别、民族、出生、住址和SFZ号等关键信息,最后统一将这些信息存入列表data中。

'''
公众号:菜J学Python
作者:J哥
'''

import easyocr
import os

# 指明所有图片所在的文件夹
images = './id_card'
# 创建ocr的reader对象,识别中英文
ocr = easyocr.Reader(['ch_sim', 'en'])
# 识别图片文字
content = ocr.readtext(images,detail=0)
# 遍历所有图片并识别文字,切片提取有效信息
data = []
for image in os.listdir(images):
    content = ocr.readtext(f'{images}/{image}', detail=0)
    print(f"正在识别:{image}")
    name = content[0][4:]
    gender = content[1][-1]
    nation = content[2][-1]
    birth = content[-5]
    if "月" not in birth:
        birth = content[-6] + "月" + content[-5]
    if "日" not in birth:
        birth = birth[:-1] + "日"
    address = content[-4][4:] + content[-3]
    number = content[-1]
    print(f"完成识别:{image}")
    print("-" * 50)
    data.append([name, gender, nation, birth, address, number])

4.保存数据

图片文字识别之后,建议通过pandas输出为Excel,方便简洁。

'''
公众号:菜J学Python
作者:J哥
'''

import pandas as pd

# 保存识别结果至Excel
df = pd.DataFrame(data, columns=["姓名", "性别", "民族", "出生", "住址", "SFZ号"])
print(f"识别结果如下:")
print(df)
df.to_excel("识别结果.xlsx", index=False)

加载全部内容

相关教程
猜你喜欢
用户评论