亲宝软件园·资讯

展开

Python图像算术运算

woshicver 人气:0

介绍

还记得你在小学时学习如何加减数字吗?现在,你也可以对图像做同样的事情!

输入图像可以进行算术运算,例如加法、减法和按位运算(AND、OR、NOT、XOR)。这些操作可以帮助提高输入照片的质量。

在本文中,你将了解使用 OpenCV Python 包对图像执行算术和按位运算的步骤。让我们开始吧!

对图像进行算术运算是什么意思?

因此,假设我们希望合并两张单独的照片中的两个像素。我们怎样才能将它们合并?

让我们想象以下场景。第一个像素的颜色强度为 (200, 0, 0),而第二个像素的颜色强度为 (100, 0, 0)。如果我们只是将这些值相加,我们得到 (300, 0, 0)。这在处理 RGB 图像时是完全可能的。

那么,我们如何在 Python 中解决这个问题呢?

该解决方案附带实现了 cv2.add() 和 cv2.subtract() 函数的 OpenCV 库。

要执行这些操作,你必须在系统上安装 OpenCV Python 库。

算术运算:图像相加

使用 cv2.add() 函数,我们可以添加两个图像。cv2.add() 将两个图像中的图片像素相加。执行此操作时要记住的一件事是,两个图像应该具有相同的深度和类型,或者第二个图像可以只是一个标量值。

这个函数的语法是:cv2.add(img1, img2)

对于这个博客,我们将考虑以下两张图片来将两张图片相加。

在进行算术运算之前,你必须知道如何读取和显示加载的图像。

现在,按照下面的代码片段阅读,执行两个图像的添加,最后显示添加的图像。

import cv2
 
img1 = cv2.imread('image1_add.jpg', 1)
#or
#img1 = cv2.imread('C:\\Users\\Admin\\Downloads\\image1_add.jpg', 1)
 
cv2.imshow('Image 1', img1)
cv2.waitKey(0)
cv2.destroyAllWindows()
 
img2 = cv2.imread('image2_add.jpg', 1)
#or
#img2 = cv2.imread('C:\\Users\\Admin\\Downloads\\image2_add.jpg', 1)
 
cv2.imshow('Image 2', img2)
cv2.waitKey(0)
cv2.destroyAllWindows()
 
# Add the images
added_img = cv2.add(img1, img2)
 
cv2.imshow('Added Image', added_img)
cv2.waitKey(0)
cv2.destroyAllWindows()

从上面的代码片段中添加的图像如下:

这只是简单的添加。我们可以使用另一个名为 cv2.addWeighted 的函数来混合图像。这类似于图像添加,但图像被赋予不同的权重以产生混合或透明的错觉。

这个函数的语法是:cv2.addWeighted(img1, wt1, img2, wt2, gammaValue)

按照下面的代码片段对两个图像执行加权加法。

import cv2
 
img1 = cv2.imread('image1_add.jpg', 1)
#or
#img1 = cv2.imread('C:\\Users\\Admin\\Downloads\\image1_add.jpg', 1)
 
cv2.imshow('Image 1', img1)
cv2.waitKey(0)
cv2.destroyAllWindows()
 
img2 = cv2.imread('image2_add.jpg', 1)
#or
#img2 = cv2.imread('C:\\Users\\Admin\\Downloads\\image2_add.jpg', 1)
 
cv2.imshow('Image 2', img2)
cv2.waitKey(0)
cv2.destroyAllWindows()
 
 
#Addition - weighted addition
added_wt_img = cv2.addWeighted(img1, 0.6, img2, 0.4, 0)
 
cv2.imshow('Added Weight Image', added_wt_img)
cv2.waitKey(0)
cv2.destroyAllWindows()

加权加法的输出如下:

在这里,拍摄了两张图像将它们混合在一起。第一张图片的权重为 0.6,第二张图片的权重为 0.4。你可以根据需要更改图像的权重!

算术运算:图像减法

就像两个图像相加一样,你可以减去两个图像。这可以使用 cv2.subtract() 函数来完成。请注意,要减去的图像必须具有相同的大小和深度。

这个函数的语法是:cv2.subtract(src1, src2)

下面的代码片段显示了如何减去两个图像。已经减去了之前使用的图像(我们在加法中使用的图像)。

import cv2
 
img1 = cv2.imread('image1_add.jpg', 1)
#or
#img1 = cv2.imread('C:\\Users\\Admin\\Downloads\\image1_add.jpg', 1)
 
cv2.imshow('Image 1', img1)
cv2.waitKey(0)
cv2.destroyAllWindows()
 
img2 = cv2.imread('image2_add.jpg', 1)
#or
#img2 = cv2.imread('C:\\Users\\Admin\\Downloads\\image2_add.jpg', 1)
 
cv2.imshow('Image 2', img2)
cv2.waitKey(0)
cv2.destroyAllWindows()
 
sub_img = cv2.subtract(img1, img2)
 
cv2.imshow('Subtracted Image', sub_img)
cv2.waitKey(0)
cv2.destroyAllWindows()

减去的图像如下:

还尝试减去两个更简单的图像以使其更易于理解。使用的两张图片是:

减去的输出是:

既然我们已经了解了如何对图像执行算术运算,我们将继续对图像进行按位运算。

位运算

当我们只需要提取图像所需的元素时,我们会使用按位运算。

这些按位技术用于各种计算机视觉应用,例如创建图像蒙版、将水印应用于图像以及创建新图像。与 OpenCV 中的其他变形方法相比,这些操作对图像中的单个像素起作用,以产生更准确的结果。

图像上的 And、Or 和 Not 操作

在开始之前,假设你熟悉三个基本的位运算符:AND、OR、NOT。

OpenCV 包括用于执行与、或和非操作的内置函数。它们是按位与、按位或和按位非。考虑下面的两张黑白图像。现在让我们将这三个操作应用于这两个图像,看看会发生什么。

import cv2
 
#read the images
img1 = cv2.imread('bitwise_image_1.jpg')
img2 = cv2.imread('bitwise_image_2.jpg')
 
bitwise_AND = cv2.bitwise_and(img1, img2)
bitwise_OR = cv2.bitwise_or(img1, img2)
bitwise_NOT = cv2.bitwise_not(img1)
 
cv2.imshow('img1', img1)
cv2.waitKey(0)
cv2.destroyAllWindows()
 
cv2.imshow('img2', img2)
cv2.waitKey(0)
cv2.destroyAllWindows()
 
cv2.imshow('AND', bitwise_AND)
cv2.waitKey(0)
cv2.destroyAllWindows()
 
cv2.imshow('OR', bitwise_OR)
cv2.waitKey(0)
cv2.destroyAllWindows()
 
cv2.imshow('NOT', bitwise_NOT)
cv2.waitKey(0)
cv2.destroyAllWindows()

上述代码段的输出将如下所示:

b2df7e3a7f64d0b9bd29daa3f3f39a8a.png

希望你已经学会了如何使用 OpenCV 对图像进行算术和按位运算。

加载全部内容

相关教程
猜你喜欢
用户评论