C++读写XML YAML文件
求则得之,舍则失之 人气:5前言
本节我们将认识XML和YAML这两种文件类型。
所谓XML,即eXtensible Markup Language,翻译成中文为“可扩展标识语言”。首先,XML是一种元标记语言。所谓元标记,就是开发者可以根据自身需要定义自己的标记,比如可以定义标记<book>、<name>。任何满足XML命名规则的名称都可以标记,这就向不同的应用程序打开了的大门。此外,XML是一种语义、结构化语言,它描述了文档的结构与语义。
YAML是YAML Ain’t a Markup Language(YAML不是一种置标语言)的缩写。YAML是一个可读性高,用来表达资料序列的格式。它参考了其他多种语言,包括:XML、C语言、Python、Perl以及电子邮件格式RFC2822。
1.如何使用
XML和YAML是使用非常广泛的文件格式。可以利用XML或者YAML格式的文件存储和还原各式各样的数据结构。当然,它们还可以存储和载入任意复杂的数据结构,其中就包括了OpenCV相关周边的数据结构,以及各种原始数据类型,如整数、浮点数和文本字符串。
我们一般使用如下过程来写入或者读取数据到XML或YAML文件中。
(1)实例化一个FileStorage类的对象,用默认带参数的构造函数完成初始化,或者用FileStorage::open()成员函数辅助初始化。
(2)使用流操作符<<进行文件写入操作,或者>>进行文件读取操作,类似C++中的文件输入输出流。
(3)使用FileStorage::release()函数析构掉FileStorage类对象,同时关闭文件。
1.1第一步:XML、YAML文件的打开
(1)准备文件写操作
FileStorage是OpenCV中XML和YAML文件的存储类,封装了所有相关的信息。它是OpenCV从文件中读数据或向文件中写数据时必须要使用的一个类。
此类的构造函数为FileStorage::FileStorage,有两个重载,如下:
C++:FileStorage::FileStorage() C++:FileStorage::FileStorage(const string& source, int flags, const string& encoding=string())
构造函数在实际使用中,一般有两种方法。
1)对于第二种带参数的构造函数,进行写操作范例如下:
FileStorage fs("abc.xml", FileStorage::WRITE);
2)对于第一种不带参数的构造函数,可以使用其成员函数FileStorage::open进行数据的写操作,范例如下:
FileStorage fs; fs.open("abc.xml",FileStorage::WRITE);
(2)准备文件读操作
上面讲到的都是以FileStorage::WRITE为标识符的写操作,而读操作,采用FileStorage::READ标识符即可,相关示例代码如下:
1)第一种方式
FileStorage fs(“abc.xml”, FileStorage::READ);
2)第二种方式
FileStorage fs; fs.open(“abc.xml”, FileStorage::READ);
另外需要注意的是,上面的这些操作示例是对XML文件为例子作演示的,而对YAML文件,操作方法是类似的,就是将XML文件换为YAML文件即可。
1.2 第二步:进行文件读写操作
(1)文本和数字的输入和输出
定义好FileStorage类对象之后,写入文件可以使用<<运算符,例如:
fs<<"iterationNr"<<100;
而读取文件,使用>>运算符,例如:
int itNr; fs["iterationNr"]>>itNr; itNr = (int) fs["iterationNr"];
(2)OpenCV数据结构的输入和输出
关于OpenCV数据结构的输入和输出,和基本的C++形式相同,范例如下:
// 数据结构的初始化 Mat R = Mat_<uchar>::eye(3,3); Mat T = Mat_<double>::zeros(3, 1); // 向Mat中写入数据 fs << "R" << R; fs << "T" << T; // 从Mat中读取数据 fs["R"] >> R; fs["T"] >> T;
1.3 第三步:vector(array)和map的输入和输出
对于vector结构的输出和输出,要注意在第一个元素前加上”[“,在最后一个元素后加上”]“。例如:
fs << "strings"<<"["; //开始读入string文本序列 fs << "image1.jpg" << "Awesomeness" << "baboon.jpg"; fs << "]"; //关闭序列
而对于map结构的操作,使用的符号是”{“和”}“,例如:
fs << "Mapping";//开始读入Mapping文本 fs << "{" << "One" << 1; fs << "Two" << 2 << "}";
读取这些数据结构的时候,会用到FileNode和FileNodeIterator数据结构。对FileStorage类的“[”、“]”操作符会返回FileNode数据类型;对于一连串的node,可以使用FileNodeIterator结构,例如:
```cpp FileNode n = fs["strings"];//读取字符串序列以得到节点 if (n.type()!=FileNode::SEQ) { cerr << "发生错误!字符串不是一个序列" << endl; return 1; } FileNodeIterator it = n.begin(),it_end = n.end(); //遍历节点 for(;it!=it_end;it++) cout << (string)*it << endl;
1.4 第四步:文件关闭
需要注意的是,文件关闭操作会在FileStorage类销毁时自动进行,但我们也可以显式调用其析构函数FileStorage::release()实现。FileStorage::release()函数会析构掉FileStorage类对象,同时关闭文件。
调用过程非常简单,如下:fs.release();
2.代码展示
2.1 写文件
#include<opencv2/opencv.hpp> #include<time.h> using namespace cv; int main() { //初始化 FileStorage fs("test.yaml", FileStorage::WRITE); //开始文件写入 fs << "frameCount" << 5; time_t rawtime; time(&rawtime); fs << "calibrationDate" << asctime(localtime(&rawtime));//读取时间量 Mat cameraMatrix = (Mat_<double>(3, 3) << 1000, 0, 320, 0, 1000, 240, 0, 0, 1); Mat distCoeffs = (Mat_<double>(5, 1) << 0.1, 0.01, -0.001, 0, 0);//畸变参数 fs << "cameraMatrix" << cameraMatrix << "distCoeffs" << distCoeffs;//读取Mat型cameraMatrix,distcoeffs的内容 fs << "feature" << "["; for (int i = 0; i < 3; i++) { int x = rand() % 640; int y = rand() % 480; uchar ibp = rand() % 256; fs << "{:" << "x" << x << "y" << y << "ibp" << "[:"; for (int j = 0; j < 8; j++) fs << ((ibp >> j) & 1); fs << "]" << "}"; } fs << "]"; fs.release(); printf("完毕,请在工程目录下查看文件-"); getchar(); return 0; }
上面的示例将一个整数、一个文本字符串(标定日期)、2 个矩阵和一个自定义结构“feature”存储到 YML,其中包括特征坐标和 LBP(局部二进制模式)值。这是样本的输出:
%YAML:1.0
frameCount: 5
calibrationDate: "Fri Jun 17 14:09:29 2011\n"
cameraMatrix: !!opencv-matrix
rows: 3
cols: 3
dt: d
data: [ 1000., 0., 320., 0., 1000., 240., 0., 0., 1. ]
distCoeffs: !!opencv-matrix
rows: 5
cols: 1
dt: d
data: [ 1.0000000000000001e-01, 1.0000000000000000e-02,
-1.0000000000000000e-03, 0., 0. ]
features:
- { x:167, y:49, lbp:[ 1, 0, 0, 1, 1, 0, 1, 1 ] }
- { x:298, y:130, lbp:[ 0, 0, 0, 1, 0, 0, 1, 1 ] }
- { x:344, y:158, lbp:[ 1, 1, 0, 0, 0, 0, 1, 0 ] }
作为练习,您可以将上面示例中的“.yml”替换为“.xml”或“.json”,然后查看相应的 XML 文件的外观。
通过查看示例代码和输出可以注意到几件事:
- 生成的 YAML(和 XML/JSON)由可以嵌套的异构集合组成。有两种类型的集合:命名集合(映射)和未命名集合(序列)。在映射中,每个元素都有一个名称并通过名称访问。这类似于 C/C++ 中的std::map结构以及 Python 中的字典。在序列中元素没有名称,它们通过索引访问。这类似于 C/C++ 中的std::vector数组以及 Python 中的列表、元组。“异构”意味着每个单一集合的元素可以有不同的类型。
- YAML/XML/JSON 中的顶级集合是一个映射。每个矩阵存储为一个映射,矩阵元素存储为一个序列。然后,有一个特征序列,其中每个特征都表示一个映射,以及嵌套序列中的 lbp 值。
- 当您写入映射(结构)时,您写入元素名称后跟其值。当您写入一个序列时,您只需一个一个地写入元素。OpenCV 数据结构(例如cv::Mat)的编写方式与简单的 C 数据结构完全相同 - 使用<<运算符。
- 要编写映射,首先写入特殊字符串{,然后将元素作为对 ( fs << <element_name> << <element_value>) 写入,然后写入结束符}。
- 要编写一个序列,首先要编写特殊的字符串[,然后编写元素,然后编写结束]。
- 在 YAML/JSON(但不是 XML)中,映射和序列可以以类似 Python 的紧凑内联形式编写。在上面的示例中,矩阵元素以及每个特征,包括它的 lbp 值,都以这种内联形式存储。要以紧凑的形式存储映射/序列,请放在:开始字符之后,例如使用{:代替{和[:代替[。当数据写入 XML 时,那些额外:的将被忽略。
2.2 读文件
#include<opencv2/opencv.hpp> #include<time.h> using namespace cv; using namespace std; int main() { //改变consolo字体颜色 system("color 6F"); //初始化 FileStorage fs2("test.yaml", FileStorage::READ); //开始文件读取 //法一,对FileNode操作 int frameCount2 = (int)fs2["framecount2"]; std::string date;//定义字符串 date //法二,使用FileNode运算符>> fs2["calibrationDate"] >> date; Mat cameraMatrix2, distCoeffs2; fs2["cameraMatrix"] >> cameraMatrix2; fs2["distCoeffs"] >> distCoeffs2;//读取 cout << "frameCount2:" << frameCount2 << endl << "calibration date:" << date << endl << "camera matrix:" << cameraMatrix2 << endl << "distortion coeffs:" << distCoeffs2 << endl; FileNode feature = fs2["feature"]; FileNodeIterator it = feature.begin(), it_end = feature.end();//定义it int idx = 0; std::vector<uchar>ibpval;//定义向量容器ibpal //使用FileNodeIterator历遍序列(读取) for (; it != it_end; it++, idx++) { cout << "feature#" << idx << ":"; cout << "x=" << (int)(*it)["x"] << ",y=" << (int)(*it)["y"] << ",ibp:("; //也可以使用filenod>>std::vector操作符很容易读取数值阵列 (*it)["ibp"] >> ibpval; for (int i = 0; i < (int)ibpval.size(); i++) cout << "" << (int)ibpval[i]; cout << ")" << endl; } fs2.release(); printf("读取完毕,请按任意键结束-"); getchar(); return 0; }
2.3 完整的示例代码
/* * filestorage_sample demonstrate the usage of the opencv serialization functionality */ #include "opencv2/core.hpp" #include <iostream> #include <string> using std::string; using std::cout; using std::endl; using std::cerr; using std::ostream; using namespace cv; static void help(char** av) { cout << "\nfilestorage_sample demonstrate the usage of the opencv serialization functionality.\n" << "usage:\n" << av[0] << " outputfile.yml.gz\n" << "\n outputfile above can have many different extensions, see below." << "\nThis program demonstrates the use of FileStorage for serialization, that is in use << and >> in OpenCV\n" << "For example, how to create a class and have it serialize, but also how to use it to read and write matrices.\n" << "FileStorage allows you to serialize to various formats specified by the file end type." << "\nYou should try using different file extensions.(e.g. yaml yml xml xml.gz yaml.gz etc...)\n" << endl; } struct MyData { MyData() : A(0), X(0), id() { } explicit MyData(int) : A(97), X(CV_PI), id("mydata1234") { } int A; double X; string id; void write(FileStorage& fs) const //Write serialization for this class { fs << "{" << "A" << A << "X" << X << "id" << id << "}"; } void read(const FileNode& node) //Read serialization for this class { A = (int)node["A"]; X = (double)node["X"]; id = (string)node["id"]; } }; //These write and read functions must exist as per the inline functions in operations.hpp static void write(FileStorage& fs, const std::string&, const MyData& x){ x.write(fs); } static void read(const FileNode& node, MyData& x, const MyData& default_value = MyData()){ if(node.empty()) x = default_value; else x.read(node); } static ostream& operator<<(ostream& out, const MyData& m){ out << "{ id = " << m.id << ", "; out << "X = " << m.X << ", "; out << "A = " << m.A << "}"; return out; } int main(int ac, char** av) { cv::CommandLineParser parser(ac, av, "{@input||}{help h ||}" ); if (parser.has("help")) { help(av); return 0; } string filename = parser.get<string>("@input"); if (filename.empty()) { help(av); return 1; } //write { FileStorage fs(filename, FileStorage::WRITE); cout << "writing images\n"; fs << "images" << "["; fs << "image1.jpg" << "myfi.png" << "baboon.jpg"; cout << "image1.jpg" << " myfi.png" << " baboon.jpg" << endl; fs << "]"; cout << "writing mats\n"; Mat R =Mat_<double>::eye(3, 3),T = Mat_<double>::zeros(3, 1); cout << "R = " << R << "\n"; cout << "T = " << T << "\n"; fs << "R" << R; fs << "T" << T; cout << "writing MyData struct\n"; MyData m(1); fs << "mdata" << m; cout << m << endl; } //read { FileStorage fs(filename, FileStorage::READ); if (!fs.isOpened()) { cerr << "failed to open " << filename << endl; help(av); return 1; } FileNode n = fs["images"]; if (n.type() != FileNode::SEQ) { cerr << "images is not a sequence! FAIL" << endl; return 1; } cout << "reading images\n"; FileNodeIterator it = n.begin(), it_end = n.end(); for (; it != it_end; ++it) { cout << (string)*it << "\n"; } Mat R, T; cout << "reading R and T" << endl; fs["R"] >> R; fs["T"] >> T; cout << "R = " << R << "\n"; cout << "T = " << T << endl; MyData m; fs["mdata"] >> m; cout << "read mdata\n"; cout << m << endl; cout << "attempting to read mdata_b\n"; //Show default behavior for empty matrix fs["mdata_b"] >> m; cout << "read mdata_b\n"; cout << m << endl; } cout << "Try opening " << filename << " to see the serialized data." << endl << endl; //read from string { cout << "Read data from string\n"; string dataString = "%YAML:1.0\n" "mdata:\n" " A: 97\n" " X: 3.1415926535897931e+00\n" " id: mydata1234\n"; MyData m; FileStorage fs(dataString, FileStorage::READ | FileStorage::MEMORY); cout << "attempting to read mdata_b from string\n"; //Show default behavior for empty matrix fs["mdata"] >> m; cout << "read mdata\n"; cout << m << endl; } //write to string { cout << "Write data to string\n"; FileStorage fs(filename, FileStorage::WRITE | FileStorage::MEMORY | FileStorage::FORMAT_YAML); cout << "writing MyData struct\n"; MyData m(1); fs << "mdata" << m; cout << m << endl; string createdString = fs.releaseAndGetString(); cout << "Created string:\n" << createdString << "\n"; } return 0; }
加载全部内容