亲宝软件园·资讯

展开

Java拓扑排序

Carol 人气:0

铺垫

有向图:我们这节要讲的算法涉及到有向图,所以我先把有向图的一些概念说一下,文章后面就不做解释啦。首先有向图节点与节点之间是用带箭头的线连接起来的。节点有出度和入度的概念,连线尾部指向的节点出度加1,连线头部,也就是箭头指向的节点入度加1。看下面这个例子,A的入度为0,出度为2,B的入度为1,出度为1,C的入度为1,出度为1,D的入度为2,出度为0。

图片

邻接表:邻接表是存储图结构的一种有效方式,如下图所示,左边节点数组存储图中所有节点,右侧邻接表存储节点的相邻节点。

图片

简介

这篇文章我们要讲的是拓扑排序,这是一个针对有向无环图的算法,主要是为了解决前驱后继的关系,即我们在完成当前事项的时候需要先完成什么事项,其实这在我们流程控制里面用的挺多的。看下面这个图,我们需要先完成A事项,然后才能去完成B,C事项,B,C事项的属于并列的,没有先后顺序,但是对于D事项需要在B,C事项完成之后才能进行。而拓扑排序能够帮助我们找到这个完成事项的合理顺序,同时我们看上面这个例子,A事项完成之后,B,C事项是没有先后顺序的,不管是先完成B还是C都符合条件,所以拓扑排序的顺序序列不是完全一定的。

工作过程

首先拓扑排序对应操作的是一个有向无环图。无环图,则肯定存在至少一个结点入度为0。在当前情况下,我们需要查找入度为0的节点进行操作,入度为0,表示当前节点没有前驱节点,或者前驱节点已经处理,可以直接操作。操作完毕之后,将当前节点的后继节点入度全部减1,再次查找入度节点为0的节点进行操作,此后就是一个递归过程,不断处理当前情况下入度为0的节点,直至所有节点处理完毕。

图片

数据结构

有向图结构如下,其中node存储当前图中包含的所有节点,adj存储对应下标节点的邻接点。初始化图时候,我们需要初始化图中节点个数,存储节点的数组以及节点对应邻接数组。同时提供一个addEdge方法,用于在两个节点直接加边,其实就是将后继节点放入前驱节点的邻接表中。

public static class Graph{
       /**
        * 节点个数
        */
       private Integer nodeSize;
       /**
        * 节点
        */
       private char[] node;
       /**
        * 邻接表
        */
       private LinkedList[] adj;

       public Graph(char[] node) {
           this.nodeSize = node.length;
           this.node = node;
           this.adj = new LinkedList[nodeSize];
           for (int i = 0 ; i < adj.length ; i++) {
               adj[i] = new LinkedList();
          }
      }
       /**
        * 在节点之间加边,前驱节点指向后继节点
        * @param front 前驱节点所在下标
        * @param end 后继节点所在下标
        */
       public void addEdge(int front, int end) {
           adj[front].add(end);
      }
  }

拓扑排序

拓扑排序首先初始化了两个临时数组,一个队列,一个inDegree数组存储对应下标节点的入度,因为每次访问的节点需要前驱节点已经完成,即入度为0,有了这个数组我们就可以比较快速的找到这些节点;另一个是visited数组,标志当前节点是否已经访问过,防止多次访问;一个nodes队列则保存在目前情况下所有入度为0的节点。(注意,为了存取方便,我们都是存储的节点下标 step1:初始化inDegree数组,visited数组; step2:遍历inDegree数组,将所有入度为0的节点入nodes队列; step3:依次将节点node出队; 根据visited判断当前node是否已经被访问,是,返回step3,否,进行下一步; 将当前节点的邻接节点入度-1,判断邻接节点入度是否为0,为0直接放入nodes队列,不为0返回step3;

/**
    * @param graph 有向无环图
    * @return 拓扑排序结果
    */
   public List<Character> toPoLogicalSort(Graph graph) {
       //用一个数组标志所有节点入度
       int[] inDegree = new int[graph.nodeSize];
       for (LinkedList list : graph.adj) {
           for (Object index : list) {
               ++ inDegree[(int)index];
          }
      }
       //用一个数组标志所有节点是否已经被访问
       boolean[] visited = new boolean[graph.nodeSize];
       //开始进行遍历
       Deque<Integer> nodes = new LinkedList<>();
       //将入度为0节点入队
       for (int i = 0 ; i < graph.nodeSize; i++) {
           if (inDegree[i] == 0) {
               nodes.offer(i);
          }
      }
       List<Character> result = new ArrayList<>();
       //将入度为0节点一次出队处理
       while (!nodes.isEmpty()) {
           int node = nodes.poll();
           if (visited[node]) {
               continue;
          }
           visited[node] = true;
           result.add(graph.node[node]);
           //将当前node的邻接节点入度-1;
           for (Object list : graph.adj[node]) {
               -- inDegree[(int)list];
               if (inDegree[(int)list] == 0) {
                   //前驱节点全部访问完毕,入度为0
                   nodes.offer((int) list);
              }
          }
      }
       return result;
  }

测试样例1

public static void main(String[] args) {
       ToPoLogicalSort toPoLogicalSort = new ToPoLogicalSort();
       //初始化一个图
       Graph graph = new Graph(new char[]{'A', 'B', 'C', 'D'});
       graph.addEdge(0, 1);
       graph.addEdge(0,2);
       graph.addEdge(1,3);
       graph.addEdge(2,3);
       List<Character> result = toPoLogicalSort.toPoLogicalSort(graph);
  }

执行结果

图片

测试样例2

public static void main(String[] args) {
       ToPoLogicalSort toPoLogicalSort = new ToPoLogicalSort();
       //初始化一个图
       Graph graph = new Graph(new char[]{'A', 'B', 'C', 'D','E','F','G','H'});
       graph.addEdge(0, 1);
       graph.addEdge(0,2);
       graph.addEdge(0,3);
       graph.addEdge(1,4);
       graph.addEdge(2,4);
       graph.addEdge(3,4);
       graph.addEdge(4,7);
       graph.addEdge(4,6);
       graph.addEdge(7,5);
       graph.addEdge(6,7);
       List<Character> result = toPoLogicalSort.toPoLogicalSort(graph);
  }

执行结果

图片

总结

我在上面有说到,拓扑排序可以用来判断图是否存在环,其实判断方式很简单,实现步骤与上面一致,只是我们最后判断一下出队的元素个数是否等于图的节点个数,如果等于,证明图无环,如果不等于则证明存在环。

加载全部内容

相关教程
猜你喜欢
用户评论