亲宝软件园·资讯

展开

Java最小生成树

爱编程的MG 人气:0

一、prim算法

时间复杂度较之kruskal较高

通俗的解释就是:

(1)从哪个点开始生成最小生成树都一样,最后的权值都是相同的

(2)从哪个点开始,先标记这个点是访问过的,用visited数组表示所有节点的访问情况

(3)访问节点开始都每个没访问结点的距离选取形成的边的权值最小值

综合以上三点就是我们prim算法写代码实现的重要思路

代码实现:

package Prim;
 
import java.util.Arrays;
 
public class PrimAlgorithm {
    public static void main(String[] args) {
        //测试看看图是否创建ok
        char[] data = new char[]{'A', 'B', 'C', 'D', 'E', 'F', 'G'};
        int verxs = data.length;
        //邻接矩阵的关系使用二维数组表示,10000这个大数,表示两个点不联通
        int[][] weight = new int[][]{
                {10000, 5, 7, 10000, 10000, 10000, 2},
                {5, 10000, 10000, 9, 10000, 10000, 3},
                {7, 10000, 10000, 10000, 8, 10000, 10000},
                {10000, 9, 10000, 10000, 10000, 4, 10000},
                {10000, 10000, 8, 10000, 10000, 5, 4},
                {10000, 10000, 10000, 4, 5, 10000, 6},
                {2, 3, 10000, 10000, 4, 6, 10000},};
        MGraph mGraph = new MGraph(verxs);
        MinTree minTree = new MinTree();
        minTree.createGraph(mGraph, verxs, data, weight);
        minTree.showGraph(mGraph);
        minTree.Prim(mGraph, 0);
    }
}
 
class MinTree {
    /**
     * 创造图
     * @param graph  图对象
     * @param verxs  图节点个数
     * @param data   图每个顶点的数据值
     * @param weight 图的边(邻接矩阵)
     */
    public void createGraph(MGraph graph, int verxs, char[] data, int[][] weight) {
        int i, j;
        for (i = 0; i < verxs; i++) {
            graph.data[i] = data[i];
            for (j = 0; j < verxs; j++) {
                graph.weight[i][j] = weight[i][j];
            }
        }
    }
 
    // 显示图的邻接矩阵
    public void showGraph(MGraph graph) {
        for (int[] link : graph.weight) {
            System.out.println(Arrays.toString(link));
        }
    }
 
    /**
     * 编写prim算法
     *
     * @param graph 图对象
     * @param v     从哪个节点开始生成最小生成树
     */
    public void Prim(MGraph graph, int v) {
        //定义一个数组,判断节点是不是被访问过了
        int[] visited = new int[graph.verxs];
        //v这个点已经被访问了,从这个点开始访问
        visited[v] = 1;
        //找到节点下标
        int h1 = -1;
        int h2 = -1;
        int minWeight = 10000;//定义初始值为最大值,只要出现小的就会替换
        int sum = 0;
        // 从1开始循环,相当于就是生成graph.verx - 1条边
        for (int k = 1; k < graph.verxs; k++) {
 
            for (int i = 0; i < graph.verxs; i++) {//遍历已经访问过的点
                if (visited[i] == 1){
                    for (int j = 0; j < graph.verxs; j++) {//遍历没有访问过的点
                        //在未访问点中寻找所有与访问过的点相连的边中权值最小值
                        if (visited[i] == 1 && visited[j] == 0 && graph.weight[i][j] < minWeight) {
                            minWeight = graph.weight[i][j];
                            h1 = i;
                            h2 = j;
                        }
                    }
                }
            }
            sum += minWeight; // 求最小生成熟的总权值
            //此时已经找到一条边是最小了
            System.out.println("边<" + graph.data[h1] + "," + graph.data[h2] + "> 权值:" + minWeight);
            //然后标记点
            visited[h2] = 1;
            //将权值重新变成最大值
            minWeight = 10000;
        }
        System.out.println("最小生成树的权值是:" + sum);
 
    }
}
 
// 图
class MGraph {
    int verxs; // 表示图节点个数
    char[] data; // 表示节点数据
    int[][] weight; // 表示边
 
    public MGraph(int verxs) {
        this.verxs = verxs;
        data = new char[verxs];
        weight = new int[verxs][verxs];
    }
}

二、kruskal算法

时间复杂度低一些,但是代码量会大一些

对克鲁斯卡尔算法的通俗解释:

(1)对每条边的权值进行排序

(2)按照从小到大依次选取边构成最小生成树,但是要注意是否构成回路,树的概念是不能生成回路

(3)此处用的方法比较巧妙使用了getEnd方法来判断两者终点是不是一样,用ends数组保存最小生成树中每个顶点的终点

代码实现:

package Kruskal;
 
import java.util.Arrays;
 
public class KruskalCase {
 
    private int edgeNum; //边的个数
    private char[] vertexs; //顶点数组
    private int[][] matrix; //邻接矩阵
    //使用 INF 表示两个顶点不能连通
    private static final int INF = Integer.MAX_VALUE;
 
    public static void main(String[] args) {
        char[] vertexs = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
        //克鲁斯卡尔算法的邻接矩阵
        int matrix[][] = {
                /*A*//*B*//*C*//*D*//*E*//*F*//*G*/
                /*A*/ {0, 12, INF, INF, INF, 16, 14},
                /*B*/ {12, 0, 10, INF, INF, 7, INF},
                /*C*/ {INF, 10, 0, 3, 5, 6, INF},
                /*D*/ {INF, INF, 3, 0, 4, INF, INF},
                /*E*/ {INF, INF, 5, 4, 0, 2, 8},
                /*F*/ {16, 7, 6, INF, 2, 0, 9},
                /*G*/ {14, INF, INF, INF, 8, 9, 0}};
        //大家可以在去测试其它的邻接矩阵,结果都可以得到最小生成树.
 
        //创建KruskalCase 对象实例
        KruskalCase kruskalCase = new KruskalCase(vertexs, matrix);
        //输出构建的
        kruskalCase.print();
        kruskalCase.kruskal();
 
    }
 
    //构造器
    public KruskalCase(char[] vertexs, int[][] matrix) {
        //初始化顶点数和边的个数
        int vlen = vertexs.length;
 
        //初始化顶点, 复制拷贝的方式
        this.vertexs = new char[vlen];
        for (int i = 0; i < vertexs.length; i++) {
            this.vertexs[i] = vertexs[i];
        }
 
        //初始化边, 使用的是复制拷贝的方式
        this.matrix = new int[vlen][vlen];
        for (int i = 0; i < vlen; i++) {
            for (int j = 0; j < vlen; j++) {
                this.matrix[i][j] = matrix[i][j];
            }
        }
        //统计边的条数
        for (int i = 0; i < vlen; i++) {
            for (int j = i + 1; j < vlen; j++) {
                if (this.matrix[i][j] != INF) {
                    edgeNum++;
                }
            }
        }
 
    }
 
    public void kruskal() {
        int index = 0; //表示最后结果数组的索引
        int[] ends = new int[edgeNum]; //用于保存"已有最小生成树" 中的每个顶点在最小生成树中的终点
        //创建结果数组, 保存最后的最小生成树
        EData[] rets = new EData[edgeNum];
 
        //获取图中 所有的边的集合 , 一共有12边
        EData[] edges = getEdges();
        System.out.println("图的边的集合=" + Arrays.toString(edges) + " 共" + edges.length); //12
 
        //按照边的权值大小进行排序(从小到大)
        sortEdges(edges);
 
        //遍历edges 数组,将边添加到最小生成树中时,判断是准备加入的边否形成了回路,如果没有,就加入 rets, 否则不能加入
        for (int i = 0; i < edgeNum; i++) {
            //获取到第i条边的第一个顶点(起点)
            int p1 = getPosition(edges[i].start); //p1=4
            //获取到第i条边的第2个顶点
            int p2 = getPosition(edges[i].end); //p2 = 5
 
            //获取p1这个顶点在已有最小生成树中的终点
            int m = getEnd(ends, p1); //m = 4
            //获取p2这个顶点在已有最小生成树中的终点
            int n = getEnd(ends, p2); // n = 5
            //是否构成回路
            if (m != n) { //没有构成回路
                ends[m] = n; // 设置m 在"已有最小生成树"中的终点 <E,F> [0,0,0,0,5,0,0,0,0,0,0,0]
                rets[index++] = edges[i]; //有一条边加入到rets数组
            }
        }
        //<E,F> <C,D> <D,E> <B,F> <E,G> <A,B>。
        //统计并打印 "最小生成树", 输出  rets
        System.out.println("最小生成树为");
        for (int i = 0; i < index; i++) {
            System.out.println(rets[i]);
        }
 
 
    }
 
    //打印邻接矩阵
    public void print() {
        System.out.println("邻接矩阵为: \n");
        for (int i = 0; i < vertexs.length; i++) {
            for (int j = 0; j < vertexs.length; j++) {
                System.out.printf("%12d", matrix[i][j]);
            }
            System.out.println();//换行
        }
    }
 
    /**
     * 功能:对边进行排序处理, 冒泡排序
     *
     * @param edges 边的集合
     */
    private void sortEdges(EData[] edges) {
        for (int i = 0; i < edges.length - 1; i++) {
            for (int j = 0; j < edges.length - 1 - i; j++) {
                if (edges[j].weight > edges[j + 1].weight) {//交换
                    EData tmp = edges[j];
                    edges[j] = edges[j + 1];
                    edges[j + 1] = tmp;
                }
            }
        }
    }
 
    /**
     * @param ch 顶点的值,比如'A','B'
     * @return 返回ch顶点对应的下标,如果找不到,返回-1
     */
    private int getPosition(char ch) {
        for (int i = 0; i < vertexs.length; i++) {
            if (vertexs[i] == ch) {//找到
                return i;
            }
        }
        //找不到,返回-1
        return -1;
    }
 
    /**
     * 功能: 获取图中边,放到EData[] 数组中,后面我们需要遍历该数组
     * 是通过matrix 邻接矩阵来获取
     * EData[] 形式 [['A','B', 12], ['B','F',7], .....]
     *
     * @return
     */
    private EData[] getEdges() {
        int index = 0;
        EData[] edges = new EData[edgeNum];
        for (int i = 0; i < vertexs.length; i++) {
            for (int j = i + 1; j < vertexs.length; j++) {
                if (matrix[i][j] != INF) {
                    edges[index++] = new EData(vertexs[i], vertexs[j], matrix[i][j]);
                }
            }
        }
        return edges;
    }
 
    /**
     * 功能: 获取下标为i的顶点的终点(), 用于后面判断两个顶点的终点是否相同
     *
     * @param ends : 数组就是记录了各个顶点对应的终点是哪个,ends 数组是在遍历过程中,逐步形成
     * @param i    : 表示传入的顶点对应的下标
     * @return 返回的就是 下标为i的这个顶点对应的终点的下标, 一会回头还有来理解
     */
    private int getEnd(int[] ends, int i) { // i = 4 [0,0,0,0,5,0,0,0,0,0,0,0]
        while (ends[i] != 0) {
            i = ends[i];
        }
        return i;
    }
 
}
 
//创建一个类EData ,它的对象实例就表示一条边
class EData {
    char start; //边的一个点
    char end; //边的另外一个点
    int weight; //边的权值
 
    //构造器
    public EData(char start, char end, int weight) {
        this.start = start;
        this.end = end;
        this.weight = weight;
    }
 
    //重写toString, 便于输出边信息
    @Override
    public String toString() {
        return "EData [<" + start + ", " + end + ">= " + weight + "]";
    }
 
 
}

加载全部内容

相关教程
猜你喜欢
用户评论