pytorch保存和恢复参数
Hydrion-Qlz 人气:0一、读写文件
1.加载和保存张量
import torch from torch import nn from torch.nn import functional as F import os path = os.path.join(os.getcwd(), "") x = torch.arange(4) torch.save(x, path + "x-file")
现在我们可以将存储在文件中的数据读回内存
x2 = torch.load(path + "x-file") x2
tensor([0, 1, 2, 3])
我们可以存储一个张量列表,然后把他们读回内存
y = torch.zeros(4) torch.save([x, y], path + 'x-file') x2, y2 = torch.load(path + 'x-file') (x2, y2)
(tensor([0, 1, 2, 3]), tensor([0., 0., 0., 0.]))
我们甚至可以写入或读取从字符串映射到张量的字典。当我们要读取或写入模型中的所有权重时,这很方便
mydict = {'x': x, 'y': y} torch.save(mydict, path + 'mydict') mydict2 = torch.load('mydict') mydict2
{'x': tensor([0, 1, 2, 3]), 'y': tensor([0., 0., 0., 0.])}
2.加载和保存模型
保存单个权重向量确实有用,但是如果我们想保存整个模型,并在之后加载他们,单独保存每个向量则会变得很麻烦。毕竟,我们可能有数百个参数分布在各处。深度学习框架提供了内置函数来保存和加载整个网络。需要注意的细节是,这里的保存模型并不是保存整个模型,而只是保存了其中的所有参数。
为了恢复模型,我们需要用代码生成框架,然后从磁盘加载参数。
net = MLP() X = torch.randn(size=(2, 20)) Y = net(X)
我们将模型的参数存储在一个叫做“mlp.params
”的文件中
torch.save(net.state_dict(), 'mlp.params')
为了恢复模型,我们实例化了原始多层感知机模型的一个备份。这里我们不需要随机初始化模型参数,而是直接读取文件中的参数
clone = MLP() clone.load_state_dict(torch.load('mlp.params')) clone.eval()
MLP( (hidden): Linear(in_features=20, out_features=256, bias=True) (out): Linear(in_features=256, out_features=10, bias=True) )
由于两个实例具有相同的模型参数,在输入相同的X时,两个实例的计算结果应该相同
Y_clone = clone(X) Y_clone == Y
tensor([[True, True, True, True, True, True, True, True, True, True], [True, True, True, True, True, True, True, True, True, True]])
加载全部内容