Python概率曲线
hhh江月 人气:0曲线一
解释
这里是使用matplotlib来绘制正态分布的曲线。
代码实现
import numpy as np import matplotlib.pyplot as plt def test1(n, m=500): out = [] result = np.random.normal(1, 5, n * m) print(result) for i in range(m): average0 = 0 for j in range(n): average0 += result[n * i + j] if j == n - 1: out.append(average0 / n) average0 = 0 print(out) plt.hist(out,bins=25) plt.title("test (1)") plt.xlabel("x") plt.ylabel("rate") plt.show() test1(5)
曲线二
解释
这里使用了matplotlib.pyplot来实现指数分布的绘制,具体的代码实现参见下面所示:
代码实现
import numpy as np import matplotlib.pyplot as plt def test2(n, m=500): out0 = [] result0 = np.random.exponential(scale=1, size=n * m) # print(result0) for i in range(m): average000 = 0 for j in range(n): average000 += result0[n * i + j] if j == n - 1: out0.append(average000 / n) average000 = 0 # print(out0) plt.hist(out0,bins=25) plt.show() test2(5)
曲线三
代码实现
import numpy as np import matplotlib.pyplot as plt def test3(n1, m111=500): out11 = [] # np.random.standard_t result11 = np.random.standard_t(1, size=n1 * m111) # print(result) for i in range(m111): average0 = 0 for j in range(n): average0 += result11[n1 * i + j] if j == n - 1: out11.append(average0 / n1) average0 = 0 # print(out11) plt.hist(out11,bins=20) plt.title("test (3)") plt.show() test3(30)
加载全部内容