NodeJS内存泄漏排查
秋水 人气:0前言
性能问题(内存、CPU 飙升导致服务重启、异常)排查一直是 Node.js 服务端开发的难点,去年在经过调研后,在我们项目的 Node.js 服务上都接入了 Easy-Monitor 来帮助排查生产环境遇到的性能问题。前段时间遇到了两例内存泄漏的案例,在这里做一个排查经过的整理。
案例一
故障现象
线上的某个服务发生了重启,经过观察 Grafana 得到,该服务在 5 天内内存持续上涨到达 1.3G+ 从而触发了自动重启。
排查过程
在内存处于高点时抓取了内存快照,在 Easy-Monitor 平台上进行分析。
图1
在图一中能够看到抓取内存快照的时候 V8 堆内有 1273 个 TCP 对象没有被释放从而导致了内存的上涨。接着,我们需要排查具体是哪里发生了内存泄漏。
图2
图二是根据第一个 TCP 对象的内存地址进行搜索得到的结果。简单点来说:
- Edge 视图展示了这个数据拥有的子数据结构。
- Retainer 视图展示了这个对象被那些数据结构引用。
我们排查问题的思路就是从泄漏对象出发,一级级向上搜索,直到找到我们眼熟的数据结构来确定是哪一段代码导致了内存泄漏。
熟悉 Node.js 的同学应该知道 TCP 对象是被 Socket 对象持有的,所以接下来搜索 Socket@328785 这个地址。
图3
在 Retainer 视图里显示 SMTPConnection._socket 指向了我们搜索的 socket 地址,而 SMTP 很明显和发送邮件相关,这里我们将问题的范围缩小到了 node-mailer
这个包上。
图4
搜索图三中 Retainer 视图中的 SMTPConnection@328773,结果如图4。 SMTPConnection@328773 又指向了 system/Context (上下文)中的 connection@328799 对象。
图5
从图5中能看到,这个上下文包含 connection、sendMessage、socketOptions、returned、connection 这些数据结构,经过对 node-mailer
源码的研究,我们能够通过这个上下文对象定位到下面中的代码片段。this.getSocket 函数的回调函数的执行上下文即 system/Context@328799,回调函数中的 var connection = new SMTPConnection(options); 就是产生泄漏的对象。
/** * Sends an e-mail using the selected settings * * @param {Object} mail Mail object * @param {Function} callback Callback function */ SMTPTransport.prototype.send = function (mail, callback) { this.getSocket(this.options, function (err, socketOptions) { if (err) { return callback(err); } var options = this.options; if (socketOptions && socketOptions.connection) { this.logger.info('Using proxied socket from %s:%s to %s:%s', socketOptions.connection.remoteAddress, socketOptions.connection.remotePort, options.host || '', options.port || ''); // only copy options if we need to modify it options = assign(false, options); Object.keys(socketOptions).forEach(function (key) { options[key] = socketOptions[key]; }); } // 这里的 connection 没有被释放。 var connection = new SMTPConnection(options); var returned = false; connection.once('error', function (err) { if (returned) { return; } returned = true; connection.close(); return callback(err); }); connection.once('end', function () { if (returned) { return; } returned = true; return callback(new Error('Connection closed')); }); var sendMessage = function () { var envelope = mail.message.getEnvelope(); var messageId = (mail.message.getHeader('message-id') || '').replace(/[<>\s]/g, ''); var recipients = [].concat(envelope.to || []); if (recipients.length > 3) { recipients.push('...and ' + recipients.splice(2).length + ' more'); } this.logger.info('Sending message <%s> to <%s>', messageId, recipients.join(', ')); connection.send(envelope, mail.message.createReadStream(), function (err, info) { if (returned) { return; } returned = true; connection.close(); if (err) { return callback(err); } info.envelope = { from: envelope.from, to: envelope.to }; info.messageId = messageId; return callback(null, info); }); }.bind(this); connection.connect(function () { if (returned) { return; } if (this.options.auth) { connection.login(this.options.auth, function (err) { if (returned) { return; } if (err) { returned = true; connection.close(); return callback(err); } sendMessage(); }); } else { sendMessage(); } }.bind(this)); }.bind(this)); };
为什么这里创建的 connection 会无法释放,这个问题留到文章末尾再揭开答案。
案例二
故障现象
线上某个服务在启动后在短时间(4 小时左右)内存就达到了上限发生了重启。
排查过程
同样在高点抓取了内存快照进行分析。
图6
在图6中能看到是因为 TLSSocket 没有释放导致了内存泄漏,查询第一个TLSSocket@4531505。
图7
图7中可以看到又指向了 SMTPConnection,由于在案例 1 排查问题的时候已经研究过 node-mailer
包了,所以知道这里的 TLSSocket 是邮箱服务在连接的时候一些通信会使用 TLSSocket。于是接着看查询SMTPConnection@4531545。
图8
在图8中,我们能够看到 535 的报错信息,在我们的业务代码中,对 535 报错设置了重试机制(调用 node-mailer
的 api 关闭旧的连接,然后重新发送),但是这里很明显旧的连接并没有被成功关闭。
问题原因
上文中的两个案例都是因为 Socket/TLSSocket 无法释放导致的,通过查看 node-mailer
源码,可以发现无论是 Socket 发送邮件成功还是 TLSSocket 报错后都会调用 SMTPConnection.close(),并最终调用 socket.end() 或者 TLSSocket.end() 来释放连接。 看了很多源码才发现原来问题出在了node-mailer
的版本和 Node.js 的版本问题上。项目中使用的node-mailer
版本是比较早的 2.7.2 版本,支持 Node.js 版本也比较低,而 node-v10.x
后调整了流相关的实现逻辑,我们的线上环境最近也从 node-v8.x
升级到了 node-v12.x
,所以产生了上文中的两个问题。
node-v9.x 以下的版本
node-v9.x
(包括 9.x)以下版本在调用 socket.end() 后会同步调用 TCP.close() 直接销毁连接。
Socket.prototype.end = function(data, encoding) { // 调用双工流(可写流)的 end 函数会触发 finish 事件。 stream.Duplex.prototype.end.call(this, data, encoding); this.writable = false; // just in case we're waiting for an EOF. if (this.readable && !this._readableState.endEmitted) this.read(0); else maybeDestroy(this); }; function maybeDestroy(socket) { if (!socket.readable && !socket.writable && !socket.destroyed && !socket.connecting && !socket._writableState.length) { // 这里调用的也是可写流的 destroy 函数 socket.destroy(); } } // 可写流 destroy 函数 function destroy(err, cb) { // 省略其余代码 // destroy 函数会调用 socket._destroy。 this._destroy(err || null, (err) => { if (!cb && err) { process.nextTick(emitErrorNT, this, err); if (this._writableState) { this._writableState.errorEmitted = true; } } else if (cb) { cb(err); } }); } Socket.prototype._destroy = function(exception, cb) { this.connecting = false; this.readable = this.writable = false; if (this._handle) { this[BYTES_READ] = this._handle.bytesRead; // this._handle = TCP(),调用TCP.close函数来关闭连接。 this._handle.close(() => { debug('emit close'); this.emit('close', isException); }); this._handle.onread = noop; this._handle = null; this._sockname = null; } if (this._server) { COUNTER_NET_SERVER_CONNECTION_CLOSE(this); debug('has server'); this._server._connections--; if (this._server._emitCloseIfDrained) { this._server._emitCloseIfDrained(); } } };
node-v10.x 以上的版本
// socket 实现了Duplex,end 函数直接调用了 writableStream.end Socket.prototype.end = function(data, encoding, callback) { stream.Duplex.prototype.end.call(this, data, encoding, callback); DTRACE_NET_STREAM_END(this); return this; }; // _stream_writable.js // writableStream.end 最终会调用如下函数 function finishMaybe(stream, state) { const need = needFinish(state); if (need) { prefinish(stream, state); if (state.pendingcb === 0) { state.finished = true; stream.emit('finish'); // 这里的 state 存放可读流的状态变量 // @node10 新增:autoDestroy 标志流是否在调用 end()后自动调用自身的 destroy,在 v12 版本默认是 false。v14 版本开始默认为 true。 // 所以当我们调用 socket.end()的时候,不会立刻销毁自己,仅仅会触发 finish 事件。 if (state.autoDestroy) { const rState = stream._readableState; if (!rState || (rState.autoDestroy && rState.endEmitted)) { stream.destroy(); } } } } return need; } // 那么 socket 什么时候会被销毁呢? // socket 构造函数 function Socket(options) { // 忽略 // 注册了end事件,触发的时候这个函数会调用自己的 destroy。 this.on('end', onReadableStreamEnd); } function onReadableStreamEnd() { // 省略 if (!this.destroyed && !this.writable && !this.writableLength) // 同样会调用可写流的 destroy 然后调用 socket._destory() this.destroy(); } // Socket 的 end 事件是可读流 read()的时候触发的。 // n 参数指定要读取的特定字节数,如果不传,每次返回内部buffer中的全部数据。 Readable.prototype.read = function(n){ const state = this._readableState; // 计算可以从缓冲区中读取多少数据。 n = howMuchToRead(n, state); // 本次可以读取的字节数为0 // 流内部缓冲区buffer中的字节数为0 // 可读流的 ended 状态为 true if (n === 0 && state.ended) { if (state.length === 0) // 结束自己 endReadable(this); return null; } } function endReadable(stream) { const state = stream._readableState; debug('endReadable', state.endEmitted); if (!state.endEmitted) { state.ended = true; process.nextTick(endReadableNT, state, stream); } } function endReadableNT(state, stream) { debug('endReadableNT', state.endEmitted, state.length); if (!state.endEmitted && state.length === 0) { state.endEmitted = true; stream.readable = false; // 触发 stream(socket)的 end 事件。 stream.emit('end'); //这里和可写流一样也有个 autoDestroy 参数,同样是默认 false。 if (state.autoDestroy) { // In case of duplex streams we need a way to detect // if the writable side is ready for autoDestroy as well const wState = stream._writableState; if (!wState || (wState.autoDestroy && wState.finished)) { stream.destroy(); } } } }
线上环境的 node-v12.x
版本中,由于 autoDestroy 默认是 false,所以在调用 socket.end() 的时候并不会同步的摧毁流,而是依赖 socket.read() 时触发 end 事件,然而在低版本的 node-mailer
实现逻辑里,会移除 socket 所有的监听器,所以也就导致了在 node-v12.x
环境下永远无法触发 socket.destroy() 来销毁连接。
SMTPConnection.prototype._onConnect = function () { // 省略 // clear existing listeners for the socket this._socket.removeAllListeners('data'); this._socket.removeAllListeners('timeout'); this._socket.removeAllListeners('close'); this._socket.removeAllListeners('end'); // 省略 };
修复泄露
通过上述排查过程,从根因上找到了生产环境中 node-v12.x
运行低版本的 node-mailer
产生内存泄露的原因,那么要解决此问题也变得非常简单。
通过升级 node-mailer
的版本以支持 node-v12.x
,困扰多时的线上内存泄露问题至此完美解决。
总结
加载全部内容