python画魔方
人气:1直接进入主题
立方体每列颜色不同:
# Import libraries import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import numpy as np # Create axis axes = [5,5,5] # Create Data data = np.ones(axes, dtype=np.bool) # Controll Tranperency alpha = 0.9 # Control colour colors = np.empty(axes + [4], dtype=np.float32) colors[0] = [1, 0, 0, alpha] # red colors[1] = [0, 1, 0, alpha] # green colors[2] = [0, 0, 1, alpha] # blue colors[3] = [1, 1, 0, alpha] # yellow colors[4] = [1, 1, 1, alpha] # grey # Plot figure fig = plt.figure() ax = fig.add_subplot(111, projection='3d') # Voxels is used to customizations of # the sizes, positions and colors. ax.voxels(data, facecolors=colors, edgecolors='grey')
立方体各面颜色不同:
import matplotlib.pyplot as plt import numpy as np def generate_rubik_cube(nx, ny, nz): """ 根据输入生成指定尺寸的魔方 :param nx: :param ny: :param nz: :return: """ # 准备一些坐标 n_voxels = np.ones((nx + 2, ny + 2, nz + 2), dtype=bool) # 生成间隙 size = np.array(n_voxels.shape) * 2 filled_2 = np.zeros(size - 1, dtype=n_voxels.dtype) filled_2[::2, ::2, ::2] = n_voxels # 缩小间隙 # 构建voxels顶点控制网格 # x, y, z均为6x6x8的矩阵,为voxels的网格,3x3x4个小方块,共有6x6x8个顶点。 # 这里//2是精髓,把索引范围从[0 1 2 3 4 5]转换为[0 0 1 1 2 2],这样就可以单独设立每个方块的顶点范围 x, y, z = np.indices(np.array(filled_2.shape) + 1).astype(float) // 2 # 3x6x6x8,其中x,y,z均为6x6x8 x[1::2, :, :] += 0.95 y[:, 1::2, :] += 0.95 z[:, :, 1::2] += 0.95 # 修改最外面的面 x[0, :, :] += 0.94 y[:, 0, :] += 0.94 z[:, :, 0] += 0.94 x[-1, :, :] -= 0.94 y[:, -1, :] -= 0.94 z[:, :, -1] -= 0.94 # 去除边角料 filled_2[0, 0, :] = 0 filled_2[0, -1, :] = 0 filled_2[-1, 0, :] = 0 filled_2[-1, -1, :] = 0 filled_2[:, 0, 0] = 0 filled_2[:, 0, -1] = 0 filled_2[:, -1, 0] = 0 filled_2[:, -1, -1] = 0 filled_2[0, :, 0] = 0 filled_2[0, :, -1] = 0 filled_2[-1, :, 0] = 0 filled_2[-1, :, -1] = 0 # 给魔方六个面赋予不同的颜色 colors = np.array(['#ffd400', "#fffffb", "#f47920", "#d71345", "#145b7d", "#45b97c"]) facecolors = np.full(filled_2.shape, '#77787b') # 设一个灰色的基调 # facecolors = np.zeros(filled_2.shape, dtype='U7') facecolors[:, :, -1] = colors[0] # 上黄 facecolors[:, :, 0] = colors[1] # 下白 facecolors[:, 0, :] = colors[2] # 左橙 facecolors[:, -1, :] = colors[3] # 右红 facecolors[0, :, :] = colors[4] # 前蓝 facecolors[-1, :, :] = colors[5] # 后绿 ax = plt.figure().add_subplot(projection='3d') ax.voxels(x, y, z, filled_2, facecolors=facecolors) plt.show() if __name__ == '__main__': generate_rubik_cube(4, 4, 4)
彩色透视立方体:
from __future__ import division import numpy as np from mpl_toolkits.mplot3d import Axes3D from mpl_toolkits.mplot3d.art3d import Poly3DCollection from matplotlib.pyplot import figure, show def quad(plane='xy', origin=None, width=1, height=1, depth=0): u, v = (0, 0) if origin is None else origin plane = plane.lower() if plane == 'xy': vertices = ((u, v, depth), (u + width, v, depth), (u + width, v + height, depth), (u, v + height, depth)) elif plane == 'xz': vertices = ((u, depth, v), (u + width, depth, v), (u + width, depth, v + height), (u, depth, v + height)) elif plane == 'yz': vertices = ((depth, u, v), (depth, u + width, v), (depth, u + width, v + height), (depth, u, v + height)) else: raise ValueError('"{0}" is not a supported plane!'.format(plane)) return np.array(vertices) def grid(plane='xy', origin=None, width=1, height=1, depth=0, width_segments=1, height_segments=1): u, v = (0, 0) if origin is None else origin w_x, h_y = width / width_segments, height / height_segments quads = [] for i in range(width_segments): for j in range(height_segments): quads.append( quad(plane, (i * w_x + u, j * h_y + v), w_x, h_y, depth)) return np.array(quads) def cube(plane=None, origin=None, width=1, height=1, depth=1, width_segments=1, height_segments=1, depth_segments=1): plane = (('+x', '-x', '+y', '-y', '+z', '-z') if plane is None else [p.lower() for p in plane]) u, v, w = (0, 0, 0) if origin is None else origin w_s, h_s, d_s = width_segments, height_segments, depth_segments grids = [] if '-z' in plane: grids.extend(grid('xy', (u, w), width, depth, v, w_s, d_s)) if '+z' in plane: grids.extend(grid('xy', (u, w), width, depth, v + height, w_s, d_s)) if '-y' in plane: grids.extend(grid('xz', (u, v), width, height, w, w_s, h_s)) if '+y' in plane: grids.extend(grid('xz', (u, v), width, height, w + depth, w_s, h_s)) if '-x' in plane: grids.extend(grid('yz', (w, v), depth, height, u, d_s, h_s)) if '+x' in plane: grids.extend(grid('yz', (w, v), depth, height, u + width, d_s, h_s)) return np.array(grids) canvas = figure() axes = Axes3D(canvas) quads = cube(width_segments=4, height_segments=4, depth_segments=4) # You can replace the following line by whatever suits you. Here, we compute # each quad colour by averaging its vertices positions. RGB = np.average(quads, axis=-2) # Setting +xz and -xz plane faces to black. RGB[RGB[..., 1] == 0] = 0 RGB[RGB[..., 1] == 1] = 0 # Adding an alpha value to the colour array. RGBA = np.hstack((RGB, np.full((RGB.shape[0], 1), .85))) collection = Poly3DCollection(quads) collection.set_color(RGBA) axes.add_collection3d(collection) show()
加载全部内容