MySQL B+树索引与哈希索引
小虾米 人气:0索引介绍
索引是一种特殊的数据库结构,被设计用来快速查询数据库表中的特定记录。索引有多种类型,就像字典有拼音查找和偏旁查找一样都是为了提高检索效率。MySQL中最常见的索引类型有
B+树索引
和哈希索引
,下面来简单介绍一下这两种索引类型有哪些差别和优劣。
B+树索引
B+树索引是一种多路径的平衡搜索树,具有如下特点:
1.非叶子节点不保存数据,只保存索引值
2.叶子节点保存所有的索引值和数据
3.同级节点通过指针自小而大顺序链接
4.节点内的数据也是自小而大顺序存放
5.叶子节点拥有父节点的所有信息
结构如下图:
优点
由于数据顺序存放,所以无论是区间还是顺序扫描都更快。
非叶子节点不存储数据,因此几乎都能放在内存中,搜索效率更高
单节点中可存储的数据更多,平均扫描I/O请求树更少
平均查询效率稳定(每次查询都从根结点到叶子结点,查询路径长度相同)
缺点
新增数据不是按顺序递增时,索引树需要重新排列,容易造成碎片和页分裂情况。
哈希索引
哈希索引采用一定的哈希算法,把键值换算成新的哈希值,检索时不需要类似B+树那样从根节点到叶子节点逐级查找,只需一次哈希算法即可立刻定位到相应的位置,速度非常快,具有如下特点:
1.哈希索引建立在哈希表的基础上
2.对于每个值,需要先计算出对应的哈希码(Hash Code),不同值的哈希码唯一
3.把哈希码保存在哈希表中,同时哈希表也保存指向对应每行记录的指针
结构如下图:
优点
大量唯一等值查询时,哈希索引效率通常更高。
缺点
哈希索引对于范围查询和模糊匹配查询显得无能为力。
哈希索引不支持排序操作,对于多列联合索引的最左匹配规则也不支持。
哈希索引不支持前缀索引,因为哈希索引始终是使用索引列的全部内容来计算哈希值。
如果存在哈希冲突的情况,也就是不同的索引列有着相同的哈希值,这时候需要遍历链表中所有的行指针进行逐行比对,直到找到所有满足条件的行,效率较低。
补充:二者区别
备注:先说下,在MySQL文档里,实际上是把B+树索引写成了BTREE,例如像下面这样的写法:
CREATE TABLE t( aid int unsigned not null auto_increment, userid int unsigned not null default 0, username varchar(20) not null default ‘', detail varchar(255) not null default ‘', primary key(aid), unique key(uid) USING BTREE, key (username(12)) USING BTREE — 此处 uname 列只创建了最左12个字符长度的部分索引 )engine=InnoDB;
B+树是一个平衡的多叉树,从根节点到每个叶子节点的高度差值不超过1,而且同层级的节点间有指针相互链接。
在B+树上的常规检索,从根节点到叶子节点的搜索效率基本相当,不会出现大幅波动,而且基于索引的顺序扫描时,也可以利用双向指针快速左右移动,效率非常高。
因此,B+树索引被广泛应用于数据库、文件系统等场景。顺便说一下,xfs文件系统比ext3/ext4效率高很多的原因之一就是,它的文件及目录索引结构全部采用B+树索引,而ext3/ext4的文件目录结构则采用Linked list, hashed B-tree、Extents/Bitmap等索引数据结构,因此在高I/O压力下,其IOPS能力不如xfs。
简单地说,哈希索引就是采用一定的哈希算法,把键值换算成新的哈希值,检索时不需要类似B+树那样从根节点到叶子节点逐级查找,只需一次哈希算法即可立刻定位到相应的位置,速度非常快。
从上面的图来看,B+树索引和哈希索引的明显区别是:
如果是等值查询,那么哈希索引明显有绝对优势,因为只需要经过一次算法即可找到相应的键值;当然了,这个前提是,键值都是唯一的。如果键值不是唯一的,就需要先找到该键所在位置,然后再根据链表往后扫描,直到找到相应的数据;
从示意图中也能看到,如果是范围查询检索,这时候哈希索引就毫无用武之地了,因为原先是有序的键值,经过哈希算法后,有可能变成不连续的了,就没办法再利用索引完成范围查询检索;
同理,哈希索引也没办法利用索引完成排序,以及like ‘xxx%’ 这样的部分模糊查询(这种部分模糊查询,其实本质上也是范围查询);
哈希索引也不支持多列联合索引的最左匹配规则;
B+树索引的关键字检索效率比较平均,不像B树那样波动幅度大,在有大量重复键值情况下,哈希索引的效率也是极低的,因为存在所谓的哈希碰撞问题。
总结
加载全部内容