Python身份证信息识别
wFitting 人气:0本篇文章使用OpenCV-Python和CnOcr来实现SFZ信息识别的案例。想要识别SFZ中的文本信息,总共分为三大步骤:一、通过预处理SFZ区域检测查找;二、SFZ文本信息提取;三、SFZ文本信息识别。下面来看一下识别的具体过程CnOcr官网。识别过程视频
前置环境
这里的环境需要安装OpenCV-Python,Numpy和CnOcr。本篇文章使用的Python版本为3.6,OpenCV-Python版本为3.4.1.15,如果是4.x版本的同学,可能会有一些Api操作不同。这些依赖的安装和介绍,我就不在这里赘述了,均是使用Pip进行安装。
识别过程
首先,导入所需要的依赖cv2,numpy,cnocr并创建一个show图像的函数,方便后面使用:
import cv2 import numpy as np from cnocr import CnOcr def show(image, window_name): cv2.namedWindow(window_name, 0) cv2.imshow(window_name, image) cv2.waitKey(0) cv2.destroyAllWindows() # 加载CnOcr的模型 ocr = CnOcr(model_name='densenet_lite_136-gru')
SFZ区域查找
通过对加载图像的灰度处理–>滤波处理–>二值处理–>边缘检测–>膨胀处理–>轮廓查找–>透视变换(校正)–>图像旋转–>固定图像大小一系列处理之后,我们便可以清晰的裁剪出SFZ的具体区域。
原始图像
使用OpenCV的imread方法读取本地图片。
image = cv2.imread('card.png') show(image, "image")
灰度处理
将三通道BGR图像转化为灰度图像,因为一下OpenCV操作都是需要基于灰度图像进行的。
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) show(gray, "gray")
中值滤波
使用滤波处理,也就是模糊处理,这样可以减少一些不需要的噪点。
blur = cv2.medianBlur(gray, 7) show(blur, "blur")
二值处理
二值处理,非黑即白。这里通过cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU,使用OpenCV的大津法二值化,对图像进行处理,经过处理后的图像,更加清晰的分辨出了背景和SFZ的区域。
threshold = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1] show(threshold, "threshold")
边缘检测
使用OpenCV中最常用的边缘检测方法,Canny,检测出图像中的边缘。
canny = cv2.Canny(threshold, 100, 150) show(canny, "canny")
边缘膨胀
为了使上一步边缘检测的边缘更加连贯,使用膨胀处理,对白色的边缘膨胀,即边缘线条变得更加粗一些。
kernel = np.ones((3, 3), np.uint8) dilate = cv2.dilate(canny, kernel, iterations=5) show(dilate, "dilate")
轮廓检测
使用findContours对边缘膨胀过的图片进行轮廓检测,可以清晰的看到背景部分还是有很多噪点的,所需要识别的SFZ部分也被轮廓圈了起来。
binary, contours, hierarchy = cv2.findContours(dilate, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) image_copy = image.copy() res = cv2.drawContours(image_copy, contours, -1, (255, 0, 0), 20) show(res, "res")
轮廓排序
经过对轮廓的面积排序,我们可以准确的提取出SFZ的轮廓。
contours = sorted(contours, key=cv2.contourArea, reverse=True)[0] image_copy = image.copy() res = cv2.drawContours(image_copy, contours, -1, (255, 0, 0), 20) show(res, "contours")
透视变换
通过对轮廓近似提取出轮廓的四个顶点,并按顺序进行排序,之后通过warpPerspective对所选图像区域进行透视变换,也就是对所选的图像进行校正处理。
epsilon = 0.02 * cv2.arcLength(contours, True) approx = cv2.approxPolyDP(contours, epsilon, True) n = [] for x, y in zip(approx[:, 0, 0], approx[:, 0, 1]): n.append((x, y)) n = sorted(n) sort_point = [] n_point1 = n[:2] n_point1.sort(key=lambda x: x[1]) sort_point.extend(n_point1) n_point2 = n[2:4] n_point2.sort(key=lambda x: x[1]) n_point2.reverse() sort_point.extend(n_point2) p1 = np.array(sort_point, dtype=np.float32) h = sort_point[1][1] - sort_point[0][1] w = sort_point[2][0] - sort_point[1][0] pts2 = np.array([[0, 0], [0, h], [w, h], [w, 0]], dtype=np.float32) # 生成变换矩阵 M = cv2.getPerspectiveTransform(p1, pts2) # 进行透视变换 dst = cv2.warpPerspective(image, M, (w, h)) # print(dst.shape) show(dst, "dst")
固定图像大小
将图像变正,通过对图像的宽高进行判断,如果宽<高,就将图像旋转90°。并将图像resize到指定大小。方便之后对图像进行处理。
if w < h: dst = np.rot90(dst) resize = cv2.resize(dst, (1084, 669), interpolation=cv2.INTER_AREA) show(resize, "resize")
检测SFZ文本位置
经过灰度,二值滤波和开闭运算后,将图像中的文本区域主键显现出来。
temp_image = resize.copy() gray = cv2.cvtColor(resize, cv2.COLOR_BGR2GRAY) show(gray, "gray") threshold = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1] show(threshold, "threshold") blur = cv2.medianBlur(threshold, 5) show(blur, "blur") kernel = np.ones((3, 3), np.uint8) morph_open = cv2.morphologyEx(blur, cv2.MORPH_OPEN, kernel) show(morph_open, "morph_open")
极度膨胀
给定一个比较大的卷积盒,进行膨胀处理,使白色的区域加深加大。更加显现出文本的区域。
kernel = np.ones((7, 7), np.uint8) dilate = cv2.dilate(morph_open, kernel, iterations=6) show(dilate, "dilate")
轮廓查找文本区域
使用轮廓查找,将白色块状区域查找出来。
binary, contours, hierarchy = cv2.findContours(dilate, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) resize_copy = resize.copy() res = cv2.drawContours(resize_copy, contours, -1, (255, 0, 0), 2) show(res, "res")
筛选出文本区域
经过上一步轮廓检测,我们发现,选中的轮廓中有一些噪点,通过对图像的观察,使用近似轮廓,然后用以下逻辑筛选出文本区域。并定义文本描述信息,将文本区域位置信息加入到指定集合中。到这一步,可以清晰的看到,所需要的文本区域统统都被提取了出来。
labels = ['姓名', '性别', '民族', '出生年', '出生月', '出生日', '住址', '公民SFZ号码'] positions = [] data_areas = {} resize_copy = resize.copy() for contour in contours: epsilon = 0.002 * cv2.arcLength(contour, True) approx = cv2.approxPolyDP(contour, epsilon, True) x, y, w, h = cv2.boundingRect(approx) if h > 50 and x < 670: res = cv2.rectangle(resize_copy, (x, y), (x + w, y + h), (0, 255, 0), 2) area = gray[y:(y + h), x:(x + w)] blur = cv2.medianBlur(area, 3) data_area = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1] positions.append((x, y)) data_areas['{}-{}'.format(x, y)] = data_area show(res, "res")
对文本区域进行排序
发现文本的区域是由下到上的顺序,并且x轴从左到右的的区域是无序的,所以使用以下逻辑,对文本区域进行排序
positions.sort(key=lambda p: p[1]) result = [] index = 0 while index < len(positions) - 1: if positions[index + 1][1] - positions[index][1] < 10: temp_list = [positions[index + 1], positions[index]] for i in range(index + 1, len(positions)): if positions[i + 1][1] - positions[i][1] < 10: temp_list.append(positions[i + 1]) else: break temp_list.sort(key=lambda p: p[0]) positions[index:(index + len(temp_list))] = temp_list index = index + len(temp_list) - 1 else: index += 1
识别文本
对文本区域使用CnOcr一一进行识别,最后将识别结果进行输出。
positions.sort(key=lambda p: p[1]) result = [] index = 0 while index < len(positions) - 1: if positions[index + 1][1] - positions[index][1] < 10: temp_list = [positions[index + 1], positions[index]] for i in range(index + 1, len(positions)): if positions[i + 1][1] - positions[i][1] < 10: temp_list.append(positions[i + 1]) else: break temp_list.sort(key=lambda p: p[0]) positions[index:(index + len(temp_list))] = temp_list index = index + len(temp_list) - 1 else: index += 1
结语
通过以上的步骤,便成功的将SFZ信息进行了提取,过程中的一些数字参数,可能会在不同的场景中有些许的调整。
以下放上所有的代码:
代码
import cv2 import numpy as np from cnocr import CnOcr def show(image, window_name): cv2.namedWindow(window_name, 0) cv2.imshow(window_name, image) # 0任意键终止窗口 cv2.waitKey(0) cv2.destroyAllWindows() ocr = CnOcr(model_name='densenet_lite_136-gru') image = cv2.imread('card.png') show(image, "image") gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) show(gray, "gray") blur = cv2.medianBlur(gray, 7) show(blur, "blur") threshold = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1] show(threshold, "threshold") canny = cv2.Canny(threshold, 100, 150) show(canny, "canny") kernel = np.ones((3, 3), np.uint8) dilate = cv2.dilate(canny, kernel, iterations=5) show(dilate, "dilate") binary, contours, hierarchy = cv2.findContours(dilate, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) image_copy = image.copy() res = cv2.drawContours(image_copy, contours, -1, (255, 0, 0), 20) show(res, "res") contours = sorted(contours, key=cv2.contourArea, reverse=True)[0] image_copy = image.copy() res = cv2.drawContours(image_copy, contours, -1, (255, 0, 0), 20) show(res, "contours") epsilon = 0.02 * cv2.arcLength(contours, True) approx = cv2.approxPolyDP(contours, epsilon, True) n = [] for x, y in zip(approx[:, 0, 0], approx[:, 0, 1]): n.append((x, y)) n = sorted(n) sort_point = [] n_point1 = n[:2] n_point1.sort(key=lambda x: x[1]) sort_point.extend(n_point1) n_point2 = n[2:4] n_point2.sort(key=lambda x: x[1]) n_point2.reverse() sort_point.extend(n_point2) p1 = np.array(sort_point, dtype=np.float32) h = sort_point[1][1] - sort_point[0][1] w = sort_point[2][0] - sort_point[1][0] pts2 = np.array([[0, 0], [0, h], [w, h], [w, 0]], dtype=np.float32) M = cv2.getPerspectiveTransform(p1, pts2) dst = cv2.warpPerspective(image, M, (w, h)) # print(dst.shape) show(dst, "dst") if w < h: dst = np.rot90(dst) resize = cv2.resize(dst, (1084, 669), interpolation=cv2.INTER_AREA) show(resize, "resize") temp_image = resize.copy() gray = cv2.cvtColor(resize, cv2.COLOR_BGR2GRAY) show(gray, "gray") threshold = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1] show(threshold, "threshold") blur = cv2.medianBlur(threshold, 5) show(blur, "blur") kernel = np.ones((3, 3), np.uint8) morph_open = cv2.morphologyEx(blur, cv2.MORPH_OPEN, kernel) show(morph_open, "morph_open") kernel = np.ones((7, 7), np.uint8) dilate = cv2.dilate(morph_open, kernel, iterations=6) show(dilate, "dilate") binary, contours, hierarchy = cv2.findContours(dilate, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) resize_copy = resize.copy() res = cv2.drawContours(resize_copy, contours, -1, (255, 0, 0), 2) show(res, "res") labels = ['姓名', '性别', '民族', '出生年', '出生月', '出生日', '住址', '公民SFZ号码'] positions = [] data_areas = {} resize_copy = resize.copy() for contour in contours: epsilon = 0.002 * cv2.arcLength(contour, True) approx = cv2.approxPolyDP(contour, epsilon, True) x, y, w, h = cv2.boundingRect(approx) if h > 50 and x < 670: res = cv2.rectangle(resize_copy, (x, y), (x + w, y + h), (0, 255, 0), 2) area = gray[y:(y + h), x:(x + w)] blur = cv2.medianBlur(area, 3) data_area = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1] positions.append((x, y)) data_areas['{}-{}'.format(x, y)] = data_area show(res, "res") positions.sort(key=lambda p: p[1]) result = [] index = 0 while index < len(positions) - 1: if positions[index + 1][1] - positions[index][1] < 10: temp_list = [positions[index + 1], positions[index]] for i in range(index + 1, len(positions)): if positions[i + 1][1] - positions[i][1] < 10: temp_list.append(positions[i + 1]) else: break temp_list.sort(key=lambda p: p[0]) positions[index:(index + len(temp_list))] = temp_list index = index + len(temp_list) - 1 else: index += 1 for index in range(len(positions)): position = positions[index] data_area = data_areas['{}-{}'.format(position[0], position[1])] ocr_data = ocr.ocr(data_area) ocr_result = ''.join([''.join(result[0]) for result in ocr_data]).replace(' ', '') # print('{}:{}'.format(labels[index], ocr_result)) result.append('{}:{}'.format(labels[index], ocr_result)) show(data_area, "data_area") for item in result: print(item) show(res, "res")
加载全部内容