Python图像读取
派大大大星 人气:01. raw,mhd 格式医学图像数据转换
raw+mhd格式是常见的一种医学图像格式,每一个病人的数据包含一个mhd文件和一个同名的raw文件,mhd即meta header data,数据头部信息,而raw存储了像素信息。方法需要使用的SimpleITK库,我们需要在自己的Python环境中安装对应的库
pip install SimpleITK
mhd+raw的数据往往是三维体数据,我们可以从mhd文件中读取数据的具体信息如图像大小、切片大小、像素大小等信息。使用sitk.ReadImage() 即可读取图像,使用sitk.GetArrayFromImage() 可获取图像矩阵。
具体代码如下:
import os import SimpleITK as sitk import matplotlib.pyplot as plt from natsort import natsorted from tqdm import tqdm import cv2 import numpy as np mhd_path = './xxx.mhd' # mhd文件需和同名raw文件放在同一个文件夹 data = sitk.ReadImage(mhd_path) # 读取mhd文件 # print(data) spacing = data.GetSpacing() # 获得spacing大小 img_data = sitk.GetArrayFromImage(data) # 获得图像矩阵 print(img_data.shape) # 图像数据转换为npy保存 np.save('img_data.npy', np.array(img_data)) # 将图像转为png格式保存 for i in range(img_data.shape[0]): cv2.imwrite('./{}.png'.format(i), img_data[i, :, :])
2. dicom格式医学图像数据转换
DICOM(Digital Imaging and Communications in Medicine) 即医学数字成像和通信,是医学图像和相关信息的国际标准(ISO 12052)。DICOM被广泛应用于放射医疗,心血管成像以及放射诊疗诊断设备(X射线,CT,核磁共振,超声等),并且在眼科和牙科等其它医学领域得到越来越深入广泛的应用。所有患者的医学图像都以 DICOM 文件格式进行存储。使用Python读取dicom图像可以使用pydicom库和SimpleITK库来完成。由于在医学图像处理领域中,对不同的图像需要使用不同的窗宽窗位导出图像,在下面代码中,我增加了对应的代码。
pip install SimpleITK pip install pydicom
使用pydicom方法具体代码如下:
import os import SimpleITK as sitk import matplotlib.pyplot as plt from natsort import natsorted from tqdm import tqdm import cv2 import pydicom import numpy as np #调整图像窗宽窗位 def window_transform(ct_array, window_width, window_center, normal=False): min_window = float(window_center) - 0.5*float(window_width) new_img = (ct_array - min_window) / float(window_width) new_img[new_img < 0] = 0 new_img[new_img > 1] = 1 if not normal: new_img = (new_img * 255).astype('uint8') return new_img img_path = 'xx.dcm' #此时读取的是所有dicom图像信息 image = pydicom.read_file(img_path) #获得图像矩阵 image_data = image.pixel_array #获得dicom中的患者信息、图像信息等 information['PatientID'] = image.PatientID information['PatientName'] = image.PatientName information['PatientBirthDate'] = image.PatientBirthDate information['PatientSex'] = image.PatientSex window_width = 1000 window_center = 30 image_data = window_transform(image_data, window_width, window_center, normal=False) cv2.imwrite('./img.png',image_data)
使用SimpleITK方法具体代码如下:
import os import SimpleITK as sitk import matplotlib.pyplot as plt from natsort import natsorted from tqdm import tqdm import cv2 import pydicom import numpy as np img_path = 'xx.dcm' #此时读取的是所有dicom图像信息 image = sitk.ReadImage(img_path) # 转为值为0-255的灰度图 rescalFilt = sitk.RescaleIntensityImageFilter() rescalFilt.SetOutputMaximum(255) rescalFilt.SetOutputMinimum(0) image = rescalFilt.Execute(image) image_data = sitk.GetArrayFromImage(image_data) image_data = np.squeeze(dicom_data) cv2.imwrite('./img.png',image_data)
3. nii格式医学图像转换
医学影像早期使用的是DICOM标准,基本上各家厂商都会使用符合DICOM标准的产品,但是这个标准对于数据分析并不方便。在神经影像兴起时就诞生了各种各样的数据存储标准,比如analyze。后为了便于学术交流,NIH拉着其他一些组织的专家成立了工作组,制定了新的神经影像的数据存储标准,称为NIFTI。 读取nii后缀的NIFTI格式图像需要安装nibabel库
pip install nibabel
使用nib.load() 函数即可读取图像数据data, 其中dataobj就是图像矩阵
import os import numpy as np import nibabel as nib import matplotlib.pyplot as plt from glob import glob img_path = './xxx.nii' image = nib.load(img_path) image_data = image.dataobj for i in range(0, dataobj.shape[2]): cv2.imwrite('./{}.png'.format(i), img_data[i, :, :])
加载全部内容