C++ OpenCV图像透视矫正
Zero___Chen 人气:0前言
本文将使用OpenCV C++ 进行图像透视矫正。
一、图像预处理
原图如图所示。首先进行图像预处理。将图像进行灰度、滤波、二值化、形态学等操作,目的是为了下面的轮廓提取。在这里我还使用了形态学开、闭操作,目的是使整个二值图像连在一起。大家在做图像预处理时,可以根据图像特征自行处理。
Mat gray; cvtColor(src, gray, COLOR_BGR2GRAY); Mat gaussian; GaussianBlur(gray, gaussian, Size(3, 3), 0); Mat thresh; threshold(gaussian, thresh, 0, 255, THRESH_BINARY_INV | THRESH_OTSU); Mat kernel = getStructuringElement(MORPH_RECT, Size(3, 3)); Mat open; morphologyEx(thresh, open, MORPH_OPEN, kernel); Mat kernel1 = getStructuringElement(MORPH_RECT, Size(7, 7)); Mat close; morphologyEx(open, close, MORPH_CLOSE, kernel1);
如图就是经过图像预处理得到的二值图像。
二、轮廓提取
1.提取最外轮廓
vector<vector<Point>>contours; findContours(close, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);
使用findContours、RETR_EXTERNAL就可以提取出物体最外轮廓。
2.提取矩形四个角点
接下来将使用approxPolyDP进行多边形轮廓拟合,目的是为了找到矩形的四个角点。关于approxPolyDP API大家可以自行百度查看其用法。
vector<vector<Point>>conPoly(contours.size()); vector<Point>srcPts; for (int i = 0; i < contours.size(); i++) { double area = contourArea(contours[i]); if (area > 10000) { double peri = arcLength(contours[i], true); approxPolyDP(contours[i], conPoly[i], 0.02*peri, true); //获取矩形四个角点 srcPts = { conPoly[i][0],conPoly[i][1],conPoly[i][2],conPoly[i][3] }; } }
3.将矩形角点排序
由于我们之前使用的approxPolyDP获取的角点是无序的,所以我们得确定各角点所在的位置。在这里我使用的算法是根据其角点所在图像位置特征确定左上、左下、右下、右上四个点。
int width = src.cols / 2; int height = src.rows / 2; int T_L, T_R, B_R, B_L; for (int i = 0; i < srcPts.size(); i++) { if (srcPts[i].x < width && srcPts[i].y < height) { T_L = i; } if (srcPts[i].x > width && srcPts[i].y < height) { T_R = i; } if (srcPts[i].x > width && srcPts[i].y > height) { B_R = i; } if (srcPts[i].x < width && srcPts[i].y > height) { B_L = i; } }
如图所示。至此已经完成了矩形四个角点的定位。接下来就可以使用透视变换进行图像矫正了。
三、透视矫正
在这里我们需要知道透视变换一个原理:
变换后,图像的长和宽应该变为:
长 = max(变换前左边长,变换前右边长)
宽 = max(变换前上边长,变换前下边长)
设变换后图像的左上角位置为原点位置。
double LeftHeight = EuDis(srcPts[T_L], srcPts[B_L]) double RightHeight = EuDis(srcPts[T_R], srcPts[B_R]); double MaxHeight = max(LeftHeight, RightHeight); double UpWidth = EuDis(srcPts[T_L], srcPts[T_R]); double DownWidth = EuDis(srcPts[B_L], srcPts[B_R]); double MaxWidth = max(UpWidth, DownWidth);
确定变换后的长宽之后,就可以使用getPerspectiveTransform、warpPerspective进行透视矫正了。
//这里使用的顺序是左上、右上、右下、左下顺时针顺序。SrcAffinePts、DstAffinePts要一一对应 Point2f SrcAffinePts[4] = { Point2f(srcPts[T_L]),Point2f(srcPts[T_R]) ,Point2f(srcPts[B_R]) ,Point2f(srcPts[B_L]) }; Point2f DstAffinePts[4] = { Point2f(0,0),Point2f(MaxWidth,0),Point2f(MaxWidth,MaxHeight),Point2f(0,MaxHeight) }; Mat M = getPerspectiveTransform(SrcAffinePts, DstAffinePts); Mat DstImg; warpPerspective(src, DstImg, M, Point(MaxWidth, MaxHeight));
这就是进行透视矫正之后的效果。
四、源码
#include<iostream> #include<opencv2/opencv.hpp> using namespace std; using namespace cv; double EuDis(Point pt1, Point pt2) { return sqrt((pt2.x - pt1.x)*(pt2.x - pt1.x) + (pt2.y - pt1.y)*(pt2.y - pt1.y)); } int main() { Mat src = imread("1.jpg"); if (src.empty()) { cout << "No Image!" << endl; system("pause"); return -1; } Mat gray; cvtColor(src, gray, COLOR_BGR2GRAY); Mat gaussian; GaussianBlur(gray, gaussian, Size(3, 3), 0); Mat thresh; threshold(gaussian, thresh, 0, 255, THRESH_BINARY_INV | THRESH_OTSU); Mat kernel = getStructuringElement(MORPH_RECT, Size(3, 3)); Mat open; morphologyEx(thresh, open, MORPH_OPEN, kernel); Mat kernel1 = getStructuringElement(MORPH_RECT, Size(7, 7)); Mat close; morphologyEx(open, close, MORPH_CLOSE, kernel1); vector<vector<Point>>contours; findContours(close, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE); vector<vector<Point>>conPoly(contours.size()); vector<Point>srcPts; for (int i = 0; i < contours.size(); i++) { double area = contourArea(contours[i]); if (area > 10000) { double peri = arcLength(contours[i], true); approxPolyDP(contours[i], conPoly[i], 0.02*peri, true); srcPts = { conPoly[i][0],conPoly[i][1],conPoly[i][2],conPoly[i][3] }; } } int width = src.cols / 2; int height = src.rows / 2; int T_L, T_R, B_R, B_L; for (int i = 0; i < srcPts.size(); i++) { if (srcPts[i].x < width && srcPts[i].y < height) { T_L = i; } if (srcPts[i].x > width && srcPts[i].y < height) { T_R = i; } if (srcPts[i].x > width && srcPts[i].y > height) { B_R = i; } if (srcPts[i].x < width && srcPts[i].y > height) { B_L = i; } } //circle(src, srcPts[T_L], 10, Scalar(0, 0, 255), -1); //circle(src, srcPts[T_R], 10, Scalar(0, 255, 255), -1); //circle(src, srcPts[B_R], 10, Scalar(255, 0, 0), -1); //circle(src, srcPts[B_L], 10, Scalar(0, 255, 0), -1); /* 变换后,图像的长和宽应该变为: 长 = max(变换前左边长,变换前右边长) 宽 = max(变换前上边长,变换前下边长) 设变换后图像的左上角位置为原点位置。 */ double LeftHeight = EuDis(srcPts[T_L], srcPts[B_L]); double RightHeight = EuDis(srcPts[T_R], srcPts[B_R]); double MaxHeight = max(LeftHeight, RightHeight); double UpWidth = EuDis(srcPts[T_L], srcPts[T_R]); double DownWidth = EuDis(srcPts[B_L], srcPts[B_R]); double MaxWidth = max(UpWidth, DownWidth); Point2f SrcAffinePts[4] = { Point2f(srcPts[T_L]),Point2f(srcPts[T_R]) ,Point2f(srcPts[B_R]) ,Point2f(srcPts[B_L]) }; Point2f DstAffinePts[4] = { Point2f(0,0),Point2f(MaxWidth,0),Point2f(MaxWidth,MaxHeight),Point2f(0,MaxHeight) }; Mat M = getPerspectiveTransform(SrcAffinePts, DstAffinePts); Mat DstImg; warpPerspective(src, DstImg, M, Point(MaxWidth, MaxHeight)); //imshow("Dst", DstImg); imshow("src", src); waitKey(0); destroyAllWindows(); system("pause"); return 0; }
总结
本文使用OpenCV C++ 进行图像透视矫正,关键步骤有以下几点。
1、图像预处理,获取二值图像。
2、将二值图像进行轮廓提取,定位矩形四个角点,并确定其位置。
3、确定图像变换后的长、宽。并将SrcAffinePts、DstAffinePts一一对应之后进行透视变换。
加载全部内容