python去除异常值和缺失值
Word_gebei 人气:01.使用箱型法去除异常值:
import numpy as np import pandas as pd import matplotlib as plt import os data = pd.read_excel('try.xls', header=0) # print(data.shape) # print(data.head(10)) # print(data.describe()) neg_list = ['位移'] print("(1)数据的行数为:") R = data.shape[0] print(R) print("(2)小于或大于阈值的数据提取:") for item in neg_list: neg_item = data[item]<2000 print(item + '小于2000的有' + str(neg_item.sum()) + '个') print("(3)异常值的个数:") for item in neg_list: iqr = data[item].quantile(0.75) - data[item].quantile(0.25) q_abnormal_L = data[item] < data[item].quantile(0.25) - 1.5 * iqr q_abnormal_U = data[item] > data[item].quantile(0.75) + 1.5 * iqr print(item + '中有' + str(q_abnormal_L.sum() + q_abnormal_U.sum()) + '个异常值') print("(4)箱型图确定上下限:") for item in neg_list: iqr = data[item].quantile(0.75) - data[item].quantile(0.25) Too_small = data[item].quantile(0.25) - 1.5 * iqr Too_big = data[item].quantile(0.25) + 1.5 * iqr print("下限是", Too_small) print("上限是", Too_big ) print("(5)所有数据为:") a = [] for i in neg_list: a.append(data[i]) print(a) print("(6)所有正常数据:") b = [] j = 0 while j < R: if (a[0][j] > Too_small): if (a[0][j] < Too_big): b.append(a[0][j]) j += 1 print(b) print("(7)所有异常数据:") c = [] i = 0 while i < R: if (a[0][i] < Too_small or a[0][i] > Too_big): c.append(a[0][i]) a[0][i] = None i +=1 print(c) print("(8)把所有异常数据删除后:") print(a) print("(9)所有数据处理后输出:") d = [] k = 0 while k < R: d.append(a[0][k]) k +=1 print(d) df = pd.DataFrame(d,columns= ['位移']) df.to_excel("try_result.xls")
2.拉格朗日插值:
import os import pandas as pd import numpy as np from scipy.interpolate import lagrange import matplotlib.pyplot as plt plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签 plt.rcParams['axes.unicode_minus']=False #用来正常显示负号 # 数据的读取 data = pd.read_excel('try.xls', header=0) neg_list = ['位移'] # 数据的行数 R = data.shape[0] # 异常数据的个数 for item in neg_list: iqr = data[item].quantile(0.75) - data[item].quantile(0.25) q_abnormal_L = data[item] < data[item].quantile(0.25) - 1.5 * iqr q_abnormal_U = data[item] > data[item].quantile(0.75) + 1.5 * iqr # print(item + '中有' + str(q_abnormal_L.sum() + q_abnormal_U.sum()) + '个异常值') # 确定数据上限和下限 for item in neg_list: iqr = data[item].quantile(0.75) - data[item].quantile(0.25) Too_small = data[item].quantile(0.25) - 1.5 * iqr Too_big = data[item].quantile(0.25) + 1.5 * iqr data[u'位移'][(data[u'位移']<Too_small) | (data[u'位移']>Too_big)] = None #过滤异常值,将其变为空值 #s为列向量,n为被插值位置,k为取前后的数据个数 def ployinter(s,n,k=5): y = s[list(range(n-k,n)) + list(range(n+1,n+1+k))] y = y[y.notnull()] #剔除空值 return lagrange(y.index,list(y))(n) #逐个元素判断是否需要插值 for i in data.columns: for j in range(len(data)): if(data[i].isnull())[j]: data[i][j] = ployinter(data[i],j) # print(data[u'位移']) # 输出拉格朗日插值后的数据 data.to_excel("try_result.xls") # 把表格列数据调整为arr,arr为修改后的数据 print("拉格朗日插值后的数据:") d = [] k = 0 while k < R: d.append(data[u'位移'][k]) k +=1 # print(d) arr = np.array(d) print(arr) # 输出图像 x = np.arange(len(d)) plt.plot(x,d,'b-',label="one", marker='*',markersize=4,linewidth=1) # b代表blue颜色 -代表直线 plt.title('位移曲线') plt.legend(loc='upper left',bbox_to_anchor=(1.0,1.0)) # 直接更改X轴坐标数 # plt.xticks((0,1,2,3,4,5,6,7,8),('0', '1', '2', '3', '4', '5', '6', '7', '8')) plt.xlabel('时间/h') plt.ylabel('位移/mm') #plt.grid(x1) plt.show()
3.数据拟合:
import numpy as np import pandas as pd import matplotlib.pyplot as plt from scipy.optimize import leastsq def Fun(p, x): # 定义拟合函数形式 a1, a2, a3 , a4 = p return a1 * x ** 3 + a2 * x ** 2 + a3 * x + a4 def error(p, x, y): # 拟合残差 return Fun(p, x) - y def main(): x = np.linspace(1, 31, 31) # 创建时间序列 data = pd.read_excel('try.xls', header=0) y = data[u'位移'] p0 = [0.1, -0.01, 100, 1000] # 拟合的初始参数设置 para = leastsq(error, p0, args=(x, y)) # 进行拟合 y_fitted = Fun(para[0], x) # 画出拟合后的曲线 plt.figure plt.plot(x, y, 'r', label='Original curve') plt.plot(x, y_fitted, '-b', label='Fitted curve') plt.legend() plt.show() print(para[0]) if __name__ == '__main__': main()
4.输出图像:
import pandas as pd import numpy as np import matplotlib.pyplot as plt plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签 plt.rcParams['axes.unicode_minus']=False #用来正常显示负号 jiaodu = ['0', '15', '30', '15', '60', '75', '90', '105', '120'] x = range(len(jiaodu)) y = [85.6801, 7.64586, 86.0956, 159.229, 179.534, 163.238, 96.4436, 10.1619, 90.9262,] #plt.figure(figsize=(10, 6)) plt.plot(x,y,'b-',label="1", marker='*',markersize=7,linewidth=3) # b代表blue颜色 -代表直线 plt.title('各个区域亮度变化') plt.legend(loc='upper left',bbox_to_anchor=(1.0,1.0)) plt.xticks((0,1,2,3,4,5,6,7,8),('0', '15', '30', '15', '60', '75', '90', '105', '120')) plt.xlabel('角度') plt.ylabel('亮度') #plt.grid(x1) plt.show()
加载全部内容