亲宝软件园·资讯

展开

Python图像灰度线性变换

Eastmount 人气:0

一.灰度线性变换

图像的灰度线性变换是通过建立灰度映射来调整原始图像的灰度,从而改善图像的质量,凸显图像的细节,提高图像的对比度。灰度线性变换的计算公式如(12-1)所示:

该公式中DB表示灰度线性变换后的灰度值,DA表示变换前输入图像的灰度值,α和b为线性变换方程f(D)的参数,分别表示斜率和截距[1-4]。

如图12-1所示,显示了图像的灰度线性变换对应的效果图。

二.图像灰度上移变换

该算法将实现图像灰度值的上移,从而提升图像的亮度。

DB=DA+50

具体实现代码如下所示。由于图像的灰度值位于0至255区间之内,所以需要对灰度值进行溢出判断。

# -*- coding: utf-8 -*-
# By:Eastmount
import cv2  
import numpy as np  
import matplotlib.pyplot as plt

#读取原始图像
img = cv2.imread('luo.png')

#图像灰度转换
grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

#获取图像高度和宽度
height = grayImage.shape[0]
width = grayImage.shape[1]

#创建一幅图像
result = np.zeros((height, width), np.uint8)

#图像灰度上移变换 DB=DA+50
for i in range(height):
    for j in range(width):
        
        if (int(grayImage[i,j]+50) > 255):
            gray = 255
        else:
            gray = int(grayImage[i,j]+50)
            
        result[i,j] = np.uint8(gray)

#显示图像
cv2.imshow("Gray Image", grayImage)
cv2.imshow("Result", result)

#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

其输出结果如图12-2所示,图像的所有灰度值上移50,图像变得更白了。注意,纯黑色对应的灰度值为0,纯白色对应的灰度值为255。

三.图像对比度增强变换

该算法将增强图像的对比度,Python实现代码如下所示。

DB=DA×1.5

# -*- coding: utf-8 -*-
# By:Eastmount
import cv2  
import numpy as np  
import matplotlib.pyplot as plt

#读取原始图像
img = cv2.imread('luo.png')

#图像灰度转换
grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

#获取图像高度和宽度
height = grayImage.shape[0]
width = grayImage.shape[1]

#创建一幅图像
result = np.zeros((height, width), np.uint8)

#图像对比度增强变换 DB=DA×1.5
for i in range(height):
    for j in range(width):
        
        if (int(grayImage[i,j]*1.5) > 255):
            gray = 255
        else:
            gray = int(grayImage[i,j]*1.5)
            
        result[i,j] = np.uint8(gray)

#显示图像
cv2.imshow("Gray Image", grayImage)
cv2.imshow("Result", result)

其输出结果如图12-3所示,图像的所有灰度值增强1.5倍。

四.图像对比度减弱变换

该算法将减弱图像的对比度,Python实现代码如下所示。

DB=DA×0.8

# -*- coding: utf-8 -*-
# By:Eastmount
import cv2  
import numpy as np  
import matplotlib.pyplot as plt

#读取原始图像
img = cv2.imread('luo.png')

#图像灰度转换
grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

#获取图像高度和宽度
height = grayImage.shape[0]
width = grayImage.shape[1]

#创建一幅图像
result = np.zeros((height, width), np.uint8)

#图像对比度减弱变换 DB=DA×0.8
for i in range(height):
    for j in range(width):
        gray = int(grayImage[i,j]*0.8)
        result[i,j] = np.uint8(gray)

#显示图像
cv2.imshow("Gray Image", grayImage)
cv2.imshow("Result", result)

#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

其输出结果如图12-4所示,图像的所有灰度值减弱,图像变得更暗。

五.图像灰度反色变换

反色变换又称为线性灰度求补变换,它是对原图像的像素值进行反转,即黑色变为白色,白色变为黑色的过程。

DB=255-DA

其Python实现代码如下所示:

# -*- coding: utf-8 -*-
# By:Eastmount
import cv2  
import numpy as np  
import matplotlib.pyplot as plt

#读取原始图像
img = cv2.imread('luo.png')

#图像灰度转换
grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

#获取图像高度和宽度
height = grayImage.shape[0]
width = grayImage.shape[1]

#创建一幅图像
result = np.zeros((height, width), np.uint8)

#图像灰度反色变换 DB=255-DA
for i in range(height):
    for j in range(width):
        gray = 255 - grayImage[i,j]
        result[i,j] = np.uint8(gray)

#显示图像
cv2.imshow("Gray Image", grayImage)
cv2.imshow("Result", result)

#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

其输出结果如图12-5所示,图像处理前后的灰度值是互补的。

图像灰度反色变换在医学图像处理中有一定的应用,如图12-6所示:

六.总结

本文主要讲解图像灰度线性变换,包括图像灰度上移、图像对比度增强变换、图像对比度减弱变换和图像灰度反色变换。希望大家一定要自己实现文章中的代码,更好地提升编程能力。

加载全部内容

相关教程
猜你喜欢
用户评论