亲宝软件园·资讯

展开

R语言 数据检验

HuangXinyue1017 人气:0

1. W检验(Shapiro–Wilk (夏皮罗–威克尔 ) W统计量检验)

目标:检验数据是否符合某正态分布,如:标准正态分布N(0,1)
R函数:shapiro.test().
结果含义:当p值小于某个显著性水平α(比如0.05)时,则认为样本不是来自正态分布的总体,否则认为样本来自正态分布的总体。

2. K检验(经验分布的Kolmogorov-Smirnov检验)

目标:检验数据的分布是否符合函数F(x)
R函数:ks.test(),如果P值很小,说明拒绝原假设,表明数据不符合F(n,m)分布。

3. 相关性检验:

R函数:cor.test()
cor.test(x, y,
alternative = c("two.sided", "less", "greater"),
method = c("pearson", "kendall", "spearman"),
exact = NULL, conf.level = 0.95, ...)

结果含义:如果p值很小,则拒绝原假设,认为x,y是相关的。否则认为是不相关的。

4. T检验

目标:用于正态总体均值假设检验,单样本,双样本都可以。  
R函数:t.test()

在这里插入图片描述

t.test(x, y = NULL,
alternative = c("two.sided", "less", "greater"),
mu = 0, paired = FALSE, var.equal = FALSE,
conf.level = 0.95, ...)

结果意义:P值小于显著性水平时拒绝原假设,否则,接受原假设。具体的假设要看所选择的是双边假设还是单边假设(又分小于和大于)

5. 正态总体方差检验

R函数:t.test()
t.test(x, y = NULL,
alternative = c("two.sided", "less", "greater"),
mu = 0, paired = FALSE, var.equal = FALSE,
conf.level = 0.95, ...)

结果意义:P值小于显著性水平时拒绝原假设,否则,接受原假设。具体的假设要看所选择的是双边假设还是单边假设(又分小于和大于)

在这里插入图片描述

6. 二项分布总体假设检验

binom.test(x, n, p = 0.5,
alternative = c("two.sided", "less", "greater"),
conf.level = 0.95)

原假设:p=p0,p<p0,p<p0 计算结果p-值很小,表示拒绝假设,否则为接受假设.

7. Pearson 拟合优度χ2检验

chisq.test(x, y = NULL, correct = TRUE,
p = rep(1/length(x), length(x)), rescale.p = FALSE,
simulate.p.value = FALSE, B = 2000) 

原假设H0:X符合F分布。

8. Fisher精确的独立检验:

fisher.test(x, y = NULL, workspace = 200000, hybrid = FALSE,
control = list(), or = 1, alternative = "two.sided",
conf.int = TRUE, conf.level = 0.95)

原假设:X,Y相关。

9. McNemar检验:

mcnemar.test(x, y = NULL, correct = TRUE)

原假设:两组数据的频数没有区别。

10. 秩相关检验

cor.test(x, y,
alternative = c("two.sided", "less", "greater"),
method = "spearman", conf.level = 0.95, ...)

原假设:x,y相关.

11. Wilcoxon秩检验

wilcox.test(x, y = NULL,
alternative = c("two.sided", "less", "greater"),
mu = 0, paired = FALSE, exact = NULL, correct = TRUE,
conf.int = FALSE, conf.level = 0.95, ...)

原假设:中位数大于,小于,不等于mu

加载全部内容

相关教程
猜你喜欢
用户评论