亲宝软件园·资讯

展开

TensorFlow构造线性回归模型 TensorFlow神经网络构造线性回归模型示例教程

零尾 人气:0
想了解TensorFlow神经网络构造线性回归模型示例教程的相关内容吗,零尾在本文为您仔细讲解TensorFlow构造线性回归模型的相关知识和一些Code实例,欢迎阅读和指正,我们先划重点:TensorFlow线性回归模型,TensorFlow神经网络,下面大家一起来学习吧。

先制作一些数据:

import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
# 随机生成1000个点,围绕在y=0.1x+0.3的直线周围
num_points = 1000
vectors_set = []
for i in range(num_points):
    x1 = np.random.normal(0.0, 0.55)
    # np.random.normal(mean,stdev,size)给出均值为mean,标准差为stdev的高斯随机数(场),当size赋值时,如:size=100,表示返回100个高斯随机数。
    y1 = x1 * 0.1 + 0.3 + np.random.normal(0.0, 0.03)
    # 后面加的高斯分布为人为噪声
    vectors_set.append([x1, y1])
# 生成一些样本
x_data = [v[0] for v in vectors_set]
y_data = [v[1] for v in vectors_set]
plt.scatter(x_data, y_data, c='r')
plt.show()
# 构造1维的w矩阵,取值是随机初始化权重参数为[-1, 1]之间的随机数
w = tf.Variable(tf.random_uniform([1], -1.0, 1.0), name='w')
# 构造1维的b矩阵,初始化为0
b = tf.Variable(tf.zeros([1]), name='b')
# 建立回归公式,经过计算得出估计值y
y = w * x_data +b

# 定义loss函数,估计值y和实际值y_data之间的均方误差作为损失
loss = tf.reduce_mean(tf.square(y - y_data), name='loss')
# 采用梯度下降法来优化参数,学习率为0.5
optimizer = tf.train.GradientDescentOptimizer(0.5)
# train相当于一个优化器,训练的过程就是最小化loss
train = optimizer.minimize(loss, name='train')
sess = tf.Session()
# 全局变量的初始化
init = tf.global_variables_initializer()
sess.run(init)
# 打印初始化的w和b
print('w = ', sess.run(w), 'b = ', sess.run(b), 'loss = ', sess.run(loss))
# 训练迭代20次
for step in range(20):
    sess.run(train)
    # 打印训练好的w和b
    print('w = ', sess.run(w), 'b = ', sess.run(b), 'loss = ', sess.run(loss))

代码运行一下,下面这个图就是上面代码刚刚构造的数据点:

这里写图片描述

有了数据之后,接下来构造线性回归模型,去学习出来这个数据符合什么样的w和b,训练完后看下得到的w和b是不是接近构造数据时的w和b,最后一次结果是w = [ 0.10149562] b = [ 0.29976717] loss = 0.000948041的,也就是这个线性回归模型学习到了数据的分布规则。也可以看出随着训练次数的迭代,loss值也越来越小,也就是模型越来越好,将训练出来的w和b构造成图中蓝色的线,这条线就是当前最能拟合数据的直线了。运行结果如图所示:

这里写图片描述 

这里写图片描述

加载全部内容

相关教程
猜你喜欢
用户评论