亲宝软件园·资讯

展开

Python Sweetviz Python Sweetviz轻松实现探索性数据分析

Python学习与数据挖掘 人气:0
想了解Python Sweetviz轻松实现探索性数据分析的相关内容吗,Python学习与数据挖掘在本文为您仔细讲解Python Sweetviz的相关知识和一些Code实例,欢迎阅读和指正,我们先划重点:Python,Sweetviz,Python,数据分析,下面大家一起来学习吧。

Sweetviz 是一个开源 Python 库,它只需三行代码就可以生成漂亮的高精度可视化效果来启动EDA(探索性数据分析)。输出一个HTML。文末提供技术交流群,喜欢点赞支持,收藏。

图片

如上图所示,它不仅能根据性别、年龄等不同栏目纵向分析数据,还能对每个栏目做众数、最大值、最小值等横向对比。

所有输入的数值、文本信息都会被自动检测,并进行数据分析、可视化和对比,最后自动帮你进行总结,是一个探索性数据分析的好帮手。

1.准备

请选择以下任一种方式输入命令安装依赖:
1. Windows 环境 打开 Cmd (开始-运行-CMD)。
2. MacOS 环境 打开 Terminal (command+空格输入Terminal)。
3. 如果你用的是 VSCode编辑器 或 Pycharm,可以直接使用界面下方的Terminal.

pip install sweetviz

2.sweetviz 基本用法

sweetviz 使用的原理是,使用一行代码,生成一个数据报告的对象(其中,my_dataframe是pandas中的DataFrame,一种表格型数据结构):

import pandas as pd
import sweetviz as sv

# 读取数据
my_dataframe = pd.read_csv('../ImpartData/iris.csv')
# 分析数据
my_report = sv.analyze(my_dataframe)
# 生成报告
my_report.show_html()

执行完成后,会在当前文件夹下生成一个HTML的报告文件

图片

双击这个html,你就能看到精美的分析报告了:

图片

其中,分析数据有三种函数可以用,除了上面提到的analyze函数,还有 compare 和 compare_intra 函数。

首先是analyze函数:

analyze(source: Union[pd.DataFrame, Tuple[pd.DataFrame, str]],
            target_feat: str = None,
            feat_cfg: FeatureConfig = None,
            pairwise_analysis: str = 'auto')

可见其有以下4个参数可以配置:

compare()丨两个数据集比较

my_report = sv.compare([my_dataframe, "Training Data"], [test_df, "Test Data"], "Survived", feature_config)

要比较两个数据集,只需使用该 compare() 函数。它的参数与 analyze() 相同,只是插入了第二个参数来覆盖比较数据帧。建议使用 [dataframe, “name”] 参数格式以更好地区分基础数据帧和比较数据帧。(例如 [my_df, "Train"]my_df 更好)

compare_intra()丨数据集栏目比较

my_report = sv.compare_intra(my_dataframe, my_dataframe["Sex"] == "male", ["Male", "Female"], feature_config)

想要对数据集中某个栏目下的参数进行分析,就采用这个函数进行。
例如,如果需要比较“性别”栏目下的“男性”和“女性”,就可以采用这个函数。

3.调整报告布局

一旦你创建了你的报告对象,只需将它传递给两个show函数中的一个:

1. show_html():

show_html( filepath='SWEETVIZ_REPORT.html',
            open_browser=True,
            layout='widescreen',
            scale=None)

**show_html(…)**将在当前文件路径中创建并保存 HTML 报告。有以下参数:

2.show_notebook():

show_notebook( w=None,
                h=None,
                scale=None,
                layout='widescreen',
                filepath=None)

它将嵌入一个 IFRAME 元素,在notebook中显示报告(例如 Jupyter、Google Colab 等)。

请注意,由于Notebook通常是一个更受限制的环境,因此使用自定义宽度/高度/比例值 (w , h , scale) 可能是个好主意。选项是:

我们的文章到此就结束啦,如果你喜欢今天文章,点赞、支持、关注。

加载全部内容

相关教程
猜你喜欢
用户评论