数据结构时间及空间复杂度 C语言数据结构时间复杂度及空间复杂度简要分析
高邮吴少 人气:0一、时间复杂度和空间复杂度是什么?
1.1算法效率定义
算法效率分为两种,一种是时间效率——时间复杂度,另一种是空间效率——空间复杂度
1.2时间复杂度概念
时间复杂度,简言之就是你写一个代码,它解决一个问题上需要走多少步骤,需要花费多长时间。打个简单的比方:现在给10个数,要求找到7在哪里1,2,3,4,5,6,7,8,9,10。我们要求写一个代码,同学狗蛋写了一个暴力查找,从第一个数依次往后遍历,他的算法要找7次,同学狗剩写了一个二分法查找,只要找2次,这就是时间复杂度的比较
算法中的基本操作的执行次数,为算法的时间复杂度
1.3空间复杂度概念
空间复杂度,是对一个算法在运行过程中临时占用存储空间大小的量度。举个栗子:我们现在要求写一个代码,狗蛋啪啪啪敲了一大堆变量,程序运行了,狗剩就用了很少的变量,程序也运行了。但是他们两个在代码运行中变量多少不同,占用的内存多少是不一样的。空间复杂度,它计算的是变量的个数。
二、如何计算常见算法的时间复杂度和空间复杂度
我们在计算时间/空间复杂度时用的都是大O渐进表示法(是一种估算法)
2.1时间复杂度计算
我们以一个简单的函数举例
代码如下:
void func1(int n) { int i = 0; int j = 0; int k = 0; int count = 0; for (i = 0;i < n;i++) { for (j = 0;j < n;j++) { count++; } } for (k = 0;k < 3 * n - 1;k++) { count++; } }
试问:该函数如果被调用,要运行多少次?
我们清楚的看出i进去有n次,共有n个i,第一个for结束要运行n^ 2次,第二个for要执行3n-1次,共执行n^ 2+3n-1次
那么我们这里的时间复杂度是否就是n^2+3n-1呢?答案是否的
我们前面说过,时间复杂度和空间复杂度用的都是大O渐进表示法,是一种估算法
我们取的值,是取对表达式中影响最大的那个
我们以n^ 2+3 * n-1这个式子进行举例:设f(n)=n^2+3n-1
n=1,f(n)=1+3-1=3
n=10,f(n)=100+30-1=129
n=100,f(n)=10000+300-1=10299
n=1000,f(n)=1002999
…
很容易发现,对f(n)影响最大的是n^ 2,设g(n)=n^2
n=1,g(n)=1
n=10,g(n)=100
n=100,g(n)=10000
n=1000,g(n)=1000000
…
当n越大,g(n)就越接近f(n)
那么这里的时间复杂度大O渐进表达法写法是这样的:O(n^2)
2.2空间复杂度计算
在学习空间复杂度的求解之前,我们要知道,空间复杂度也是用大O渐进表达法进行求解,我们计算的不是所占空间大小,而是变量的个数。先来看一段代码:
代码如下(示例):
#include<stdio.h> void bubblesort(int*a, int n) { assert(a); for (size_t end = n;end > 0;--end) { int exchange = 0; for (size_t i = 1;i < end;++i) { if (a[i - 1] > a[i]) swap(&a[i - 1], &a[i]); exchange = 1; } if (exchange == 0) break; } }
在上面这个代码中,我们创建了三个变量分别是size_t end
、int exchange
、size_t i
,尽管我们这个函数会经历很多的循环,但这三个变量是反复使用的,也就是说他们所占的空间是被反复使用的,空间的多少是没有变的,这里区别时间复杂度——时间是累计的,空间是不累计的(对于时间复杂度,每次循环都会被计算;对于空间复杂度,空间是可以被反复使用的)。
我们上面说过,空间复杂度计算也是用的大O渐进表示法,对于常数,我们统一用O(1)表示(大O渐进表示法详情见时间和空间复杂度篇1)
ps1:assert通常用于诊断程序中潜在的BUG,通过使用assert(condition), 当condition为false时,程序提前结束运行,利于程序BUG的定位。
ps2:size_t是一种类型,把它看作long unsigned int
我们再来看一段代码:
代码如下(示例):
//计算bubblesort的空间复杂度 #include<stdio.h> long long Factorial(size_t n) { return N < 2 ? N : Factorial(n - 1)*n; }
这段代码是一个很简单的递归实现阶乘运算,那么它的空间复杂度是多少呢?我们先假设传过去的n=10。
10传过来我们会进行10次递归,每次递归是创建一个函数栈帧(也就是一个空间),共创建10次,每一次的空间复杂度都是O(1)。把10换成n,也就是进行n次递归,每次递归会创建1个函数栈帧,空间复杂度是O(n)。
ps:可能会有小伙伴问,那函数栈帧递归往回走的时候不是销毁了吗?注意:这里的空间复杂度是计算的“最坏、最多的情况”,况且不管是什么函数,在使用过后其栈帧都会销毁,空间复杂度算的是它用的空间最多的时候。
2.3快速推倒大O渐进表达法
1.常数1代替所有加法运算中的常数
2.只保留最高阶(高数极限思想)
3.若最高阶存在且不为常数,则去除最高阶的系数,比如3*n^ 9,去掉系数变为n^9
我们再来看两个代码训练一下
代码1如下:
void func2(int n) { int i = 0; int k = 0; int count = 0; for (i = 0;i < 3n;i++) { count++; } for (k = 0;k < 6;k++) { count++; } }
这里f(n)=3n+6,它的大O渐进表达法就是O(n)
代码2如下:
void func3(int n) { int i = 0; int count = 0; for (i = 0;i < 1000;i++) { count++; } }
这里一眼就看出是运行1000次,用什么来表示呢?前面说过:常数1代替所有加法运算中的常数,所以这里不管常数有多大,只要你只有一个常数都用O(1)表示
一些注意事项:
O(1)这个时间复杂度的估值是不随n的改变而改变的,以大白话说,不管你输入的n是多少,我这个算法的效率是不变的
O(n)这个时间复杂度是随n改变的
打个通俗的比方:设一个函数O(x)=1,那你x随意多少,函数值都是1
设一个函数O(X)=x,那这里函数值就随x变换而变换了
三、一些特殊的情况
有些算法的时间复杂度是存在最好、平均、最坏情况:
最坏情况:任意输入规模的最大运行次数(上界)
平均情况:任意输入规模的期望运行次数
最好情况:任意输入规模的最小运行次数(下界)
不多说,举例说明:
代码如下:
const char*strchr(char*str, char c) { while (*str != '\0') { if (*str == c) { return str; } ++str; } return NULL; }
上面的代码是一个简单的查找字符的函数,比如我们现在给一串字符共n个字符“aaaaba…aaac”(省略号省略a)
这里查找a一下子就找到了,查找b要点功夫,查找c就更慢了,如果查找d,不好意思,查无此d。
那么这里就出现了最好情况:一次找到O(1)
平均情况:O(n/2)
最差情况:O(n)
对于这里最坏情况可能有同学要说为什么是O(n),你看最坏情况没找到不是吗?这里解释是这样的,你找c要n次,找d是找不到也要找n次才能确定找不到。
总结
本文介绍了时间和空间复杂度的定义及大O渐进表达法的算法及一些特殊情况的解释,希望对屏幕前的读者有所帮助,祝您学习愉快!
更多关于数据结构时间复及空间复杂度的资料请关注其它相关文章!
加载全部内容