亲宝软件园·资讯

展开

python数据文件处理 浅析python常用数据文件处理方法

Fourier_1024 人气:0
想了解浅析python常用数据文件处理方法的相关内容吗,Fourier_1024在本文为您仔细讲解python数据文件处理的相关知识和一些Code实例,欢迎阅读和指正,我们先划重点:python数据文件处理,python文件处理,下面大家一起来学习吧。

0.前言

虽说python运行速度慢,但其编程速度,第三方包的丰富度是真的高。
涉及到文件批处理还是会选择python。

1. 动态文件名

在文件批处理中,文件名经常只有编号是不同的,可以通过给字符串传递不同的编号来获取动态文件名。

file_num = 324
# file_num = 1
for i in range(file_num):
	file_name = "正常数据\\{}.正常.txt".format(i + 1)
	...

2. 将文件转换为csv格式

一般数据提供者为了节省存储空间,都会通过规定的格式存储到txt文件中,这种格式对计算机可能并不友好。而逗号文件csv格式可以轻松被numpy、pandas等数据处理包读取。
首先通过逐行读取获取每行数据(大部分数据文件都是每行格式相同,如果数据只有一行,可以全部读取或者逐字符读取),之后通过line.replace('\n', ‘')将每行的换行符删除,以免最后得到的csv文件有空行。
使用line.split(':')将字符串分解为多个字段。
通过csv.writer写入整行。

import csv
outFile = open(file_path + outFile_name, 'w', encoding='utf-8', newline='' "")
csv_writer = csv.writer(outFile)
with open(file_path + file_name, "r") as f:
    index = 0
    for line in f:
        # 写入表头
        if index == 0:
            csv_writer.writerow(['T', 'TimeStamp', 'RangeReport', 'TagID', 'AnchorID',
                                 'ranging', 'check', 'SerialNumber', 'DataID'])
            index = index + 1
            continue
        line = line.replace('\n', '')
        str = line.split(':')
        csv_writer.writerow(str)

3. 初步处理csv文件

一开始得到的csv文件往往是我们不想要的,需要进行简单的处理。
例如我想将四行数据合并为一行。
使用pandas读取csv文件为一个表df。将希望生成的格式简单做一个有标题、有一行数据的文件,读取为另一个表df2.
可以使用

del df['T']

来删除指定的列。

可以通过

df2.loc[row] = list

来确定新文件的一行数据。pandas访问行数据

import pandas as pd

df = pd.read_csv(file_path + file_name)
# 删除某些列
del df['T']
del df['RangeReport']
del df['TagID']

# 判断同一DataID对应的SerialNumber是否相同
# SerialNumberBegin = df['SerialNumber'][0]
# DataIDBegin = df['DataID'][0]
# for row in range(df.shape[0]):
#     c = df['SerialNumber'][row] != (SerialNumberBegin + int(row / 4)) % 256
#     d = df['DataID'][row] != DataIDBegin + int(row / 4)
#     e = df['AnchorID'][row] != row % 4
#     if c | d | e:
#         print('err')
del df['AnchorID']

# print(type(df['TimeStamp'][0]))
# 进行表合并
df2 = pd.read_csv(file_path + "合并格式.csv")
for row in range(int(df.shape[0]/4)):
    list = [3304,229,90531088,90531088,90531088,90531088,760,760,760,760,760,760,760,760]
    # DataID,SerialNumber,TimeStamp0,TimeStamp1,TimeStamp2,TimeStamp3,ranging0,check0,ranging1,check1,ranging2,check2,ranging3,check3
    list[0] = df['DataID'][row*4]
    list[1] = df['SerialNumber'][row*4]
    list[2] = df['TimeStamp'][row*4+0]
    list[3] = df['TimeStamp'][row*4+1]
    list[4] = df['TimeStamp'][row*4+2]
    list[5] = df['TimeStamp'][row*4+3]
    list[6]  = df['ranging'][row*4+0]
    list[7]  = df['check'][row*4+0]
    list[8]  = df['ranging'][row*4+1]
    list[9]  = df['check'][row*4+1]
    list[10] = df['ranging'][row*4+2]
    list[11] = df['check'][row*4+2]
    list[12] = df['ranging'][row*4+3]
    list[13] = df['check'][row*4+3]

    df2.loc[row] = list
df2.to_csv(file_path+contact_name)

4. 获取部分数据

可以通过

df0 = df.iloc[:, 3:7]

或者

df0 = df[["check0","check1","check2","check3"]]

来获取一个表的某几列。

5. 数据间的格式转换

一般会在list、numpy、pandas三种格式间进行数据转换。
自己创建数据时,经常使用

y_show = []
y_show.append(n_clusters_)

维度调整好后,可以是一维或者多维,再转换为numpy或者pandas。
其中转换成numpy的方法如下

y = np.array(y_show)

6. 离群点、重合点的处理

使用DBSCAN算法进行聚类。具体算法描述随便搜就有。
有两个重要参数,一个是聚类半径,另一个是最小邻居数。
指定较大半径以及较大邻居数可以筛选出离散点。
指定较小半径可以筛选出重合点、相似点。
代码如下,使用一个n*m的numpy矩阵作为输入,对m维的点进行聚类。
通过一通操作获取labels,是一个map,key值为int数值,-1,0,1,2…。-1代表离群点,其他代表第几簇。value是一个list,代表各簇的点的下标。

from sklearn.cluster import DBSCAN

y = df[["d0","d1","d2","d3"]].to_numpy()

db = DBSCAN(eps=3, min_samples=2).fit(y)
core_samples_mask = np.zeros_like(db.labels_, dtype=bool)
core_samples_mask[db.core_sample_indices_] = True
labels = db.labels_

# 统计簇中labels的数量
n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)

7. 数据绘制

绘制二维的比较简单,这里只贴上三维绘制代码

import matplotlib.pyplot as plt
import pandas as pd

from mpl_toolkits.mplot3d import axes3d

df = pd.read_csv(file_path+file_name)
x1 = df["x"].to_numpy()
y1 = df["y"].to_numpy()
z1 = df["z"].to_numpy()

df = pd.read_csv(file_path+file_name2)
x2 = df["x"].to_numpy()
y2 = df["y"].to_numpy()
z2 = df["z"].to_numpy()

# new a figure and set it into 3d
fig = plt.figure()
ax = fig.gca(projection='3d')

# set figure information
# ax.set_title("3D")
ax.set_xlabel("X")
ax.set_ylabel("Y")
ax.set_zlabel("Z")

# draw the figure, the color is r = read
# figure1 = ax.plot(x1, y1, z1, c='b')
figure2 = ax.plot(x2, y2, z2, c='r')
# figure3 = ax.plot(x3, x3, z3, c='g')
# figure4 = ax.plot(x4, x4, z4, c='y')

ax.set_xlim(0, 7000)
# ax.set_ylim(0, 5000)
ax.set_zlim(0, 3000)

plt.show()

8. numpy的矩阵运算

# 转换数据类型
Zk = Zk.astype(float)
# 范数 a,b是维度相同的向量
np.linalg.norm(a-b) 
# 矩阵乘法
np.matmul(A, B)
# 矩阵求逆
np.linalg.inv(A)
# 单位阵
np.eye(dims)
# 转置
Zk = Zk.T

9. 保存文件

可以使用csv writerow存文件,见1.
也可以使用numpy或者pandas保存文件。
如果直接使用pandas的

df2.to_csv(file_path+contact_name)

保存文件,会额外保存一行index。可以通过参数,index=False来控制。
如果还有其他要求可以查阅pd.to_csv

也可使用numpy,将一个numpy类型数据通过指定格式存文件。这里一般要指定格式,否则有可能会存成自己不希望的类型。

np.savetxt(file_path + "异常数据.txt", np.array(y_show,dtype=np.int16), fmt="%d")

加载全部内容

相关教程
猜你喜欢
用户评论