数学建模模拟退火算法多变量函数优化 Python数学建模学习模拟退火算法多变量函数优化示例解析
youcans 人气:01、模拟退火算法
退火是金属从熔融状态缓慢冷却、最终达到能量最低的平衡态的过程。模拟退火算法基于优化问题求解过程与金属退火过程的相似性,以优化目标为能量函数,以解空间为状态空间,以随机扰动模拟粒子的热运动来求解优化问题([1] KIRKPATRICK,1988)。
模拟退火算法结构简单,由温度更新函数、状态产生函数、状态接受函数和内循环、外循环终止准则构成。
温度更新函数是指退火温度缓慢降低的实现方案,也称冷却进度表;
状态产生函数是指由当前解随机产生新的候选解的方法;
状态接受函数是指接受候选解的机制,通常采用Metropolis准则;
外循环是由冷却进度表控制的温度循环;
内循环是在每一温度下循环迭代产生新解的次数,也称Markov链长度。
模拟退火算法的基本流程如下:
(1)初始化:初始温度T,初始解状态s,迭代次数L;
(2)对每个温度状态,重复 L次循环产生和概率性接受新解:
(3)通过变换操作由当前解s 产生新解s′;
(4)计算能量差 ∆E,即新解的目标函数与原有解的目标函数的差;
(5)若∆E <0则接受s′作为新的当前解,否则以概率exp(-∆E/T) 接受s′ 作为新的当前解;
(6)在每个温度状态完成 L次内循环后,降低温度 T,直到达到终止温度。
2、多变量函数优化问题
选取经典的函数优化问题和组合优化问题作为测试案例。
问题 1:Schwefel 测试函数,是复杂的多峰函数,具有大量局部极值区域。
本文取 d=10, x=[-500,500],函数在 X=(420.9687,…420.9687)处为全局最小值 f(X)=0.0。
F(X)=418.9829×n-∑(i=1,n)〖xi* sin(√(|xi|)) 〗
使用模拟退火算法的基本方案:控制温度按照 T(k) = a * T(k-1) 指数衰减,衰减系数取 a;如式(1)按照 Metropolis 准则接受新解。对于问题 1(Schwefel函数),通过对当前解的一个自变量施加正态分布的随机扰动产生新解。
3、模拟退火算法 Python 程序
# 模拟退火算法 程序:多变量连续函数优化 # Program: SimulatedAnnealing_v1.py # Purpose: Simulated annealing algorithm for function optimization # Copyright 2021 YouCans, XUPT # Crated:2021-04-30 # = 关注 Youcans,分享原创系列 https://blog.csdn.net/youcans = # -*- coding: utf-8 -*- import math # 导入模块 import random # 导入模块 import pandas as pd # 导入模块 import numpy as np # 导入模块 numpy,并简写成 np import matplotlib.pyplot as plt # 导入模块 matplotlib.pyplot,并简写成 plt from datetime import datetime # 子程序:定义优化问题的目标函数 def cal_Energy(X, nVar): # 测试函数 1: Schwefel 测试函数 # -500 <= Xi <= 500 # 全局极值:(420.9687,420.9687,...),f(x)=0.0 sum = 0.0 for i in range(nVar): sum += X[i] * np.sin(np.sqrt(abs(X[i]))) fx = 418.9829 * nVar - sum return fx # 子程序:模拟退火算法的参数设置 def ParameterSetting(): cName = "funcOpt" # 定义问题名称 nVar = 2 # 给定自变量数量,y=f(x1,..xn) xMin = [-500, -500] # 给定搜索空间的下限,x1_min,..xn_min xMax = [500, 500] # 给定搜索空间的上限,x1_max,..xn_max tInitial = 100.0 # 设定初始退火温度(initial temperature) tFinal = 1 # 设定终止退火温度(stop temperature) alfa = 0.98 # 设定降温参数,T(k)=alfa*T(k-1) meanMarkov = 100 # Markov链长度,也即内循环运行次数 scale = 0.5 # 定义搜索步长,可以设为固定值或逐渐缩小 return cName, nVar, xMin, xMax, tInitial, tFinal, alfa, meanMarkov, scale # 模拟退火算法 def OptimizationSSA(nVar,xMin,xMax,tInitial,tFinal,alfa,meanMarkov,scale): # ====== 初始化随机数发生器 ====== randseed = random.randint(1, 100) random.seed(randseed) # 随机数发生器设置种子,也可以设为指定整数 # ====== 随机产生优化问题的初始解 ====== xInitial = np.zeros((nVar)) # 初始化,创建数组 for v in range(nVar): # random.uniform(min,max) 在 [min,max] 范围内随机生成一个实数 xInitial[v] = random.uniform(xMin[v], xMax[v]) # 调用子函数 cal_Energy 计算当前解的目标函数值 fxInitial = cal_Energy(xInitial, nVar) # ====== 模拟退火算法初始化 ====== xNew = np.zeros((nVar)) # 初始化,创建数组 xNow = np.zeros((nVar)) # 初始化,创建数组 xBest = np.zeros((nVar)) # 初始化,创建数组 xNow[:] = xInitial[:] # 初始化当前解,将初始解置为当前解 xBest[:] = xInitial[:] # 初始化最优解,将当前解置为最优解 fxNow = fxInitial # 将初始解的目标函数置为当前值 fxBest = fxInitial # 将当前解的目标函数置为最优值 print('x_Initial:{:.6f},{:.6f},\tf(x_Initial):{:.6f}'.format(xInitial[0], xInitial[1], fxInitial)) recordIter = [] # 初始化,外循环次数 recordFxNow = [] # 初始化,当前解的目标函数值 recordFxBest = [] # 初始化,最佳解的目标函数值 recordPBad = [] # 初始化,劣质解的接受概率 kIter = 0 # 外循环迭代次数,温度状态数 totalMar = 0 # 总计 Markov 链长度 totalImprove = 0 # fxBest 改善次数 nMarkov = meanMarkov # 固定长度 Markov链 # ====== 开始模拟退火优化 ====== # 外循环,直到当前温度达到终止温度时结束 tNow = tInitial # 初始化当前温度(current temperature) while tNow >= tFinal: # 外循环,直到当前温度达到终止温度时结束 # 在当前温度下,进行充分次数(nMarkov)的状态转移以达到热平衡 kBetter = 0 # 获得优质解的次数 kBadAccept = 0 # 接受劣质解的次数 kBadRefuse = 0 # 拒绝劣质解的次数 # ---内循环,循环次数为Markov链长度 for k in range(nMarkov): # 内循环,循环次数为Markov链长度 totalMar += 1 # 总 Markov链长度计数器 # ---产生新解 # 产生新解:通过在当前解附近随机扰动而产生新解,新解必须在 [min,max] 范围内 # 方案 1:只对 n元变量中的一个进行扰动,其它 n-1个变量保持不变 xNew[:] = xNow[:] v = random.randint(0, nVar-1) # 产生 [0,nVar-1]之间的随机数 xNew[v] = xNow[v] + scale * (xMax[v]-xMin[v]) * random.normalvariate(0, 1) # random.normalvariate(0, 1):产生服从均值为0、标准差为 1 的正态分布随机实数 xNew[v] = max(min(xNew[v], xMax[v]), xMin[v]) # 保证新解在 [min,max] 范围内 # ---计算目标函数和能量差 # 调用子函数 cal_Energy 计算新解的目标函数值 fxNew = cal_Energy(xNew, nVar) deltaE = fxNew - fxNow # ---按 Metropolis 准则接受新解 # 接受判别:按照 Metropolis 准则决定是否接受新解 if fxNew < fxNow: # 更优解:如果新解的目标函数好于当前解,则接受新解 accept = True kBetter += 1 else: # 容忍解:如果新解的目标函数比当前解差,则以一定概率接受新解 pAccept = math.exp(-deltaE / tNow) # 计算容忍解的状态迁移概率 if pAccept > random.random(): accept = True # 接受劣质解 kBadAccept += 1 else: accept = False # 拒绝劣质解 kBadRefuse += 1 # 保存新解 if accept == True: # 如果接受新解,则将新解保存为当前解 xNow[:] = xNew[:] fxNow = fxNew if fxNew < fxBest: # 如果新解的目标函数好于最优解,则将新解保存为最优解 fxBest = fxNew xBest[:] = xNew[:] totalImprove += 1 scale = scale*0.99 # 可变搜索步长,逐步减小搜索范围,提高搜索精度 # ---内循环结束后的数据整理 # 完成当前温度的搜索,保存数据和输出 pBadAccept = kBadAccept / (kBadAccept + kBadRefuse) # 劣质解的接受概率 recordIter.append(kIter) # 当前外循环次数 recordFxNow.append(round(fxNow, 4)) # 当前解的目标函数值 recordFxBest.append(round(fxBest, 4)) # 最佳解的目标函数值 recordPBad.append(round(pBadAccept, 4)) # 最佳解的目标函数值 if kIter%10 == 0: # 模运算,商的余数 print('i:{},t(i):{:.2f}, badAccept:{:.6f}, f(x)_best:{:.6f}'.\ format(kIter, tNow, pBadAccept, fxBest)) # 缓慢降温至新的温度,降温曲线:T(k)=alfa*T(k-1) tNow = tNow * alfa kIter = kIter + 1 # ====== 结束模拟退火过程 ====== print('improve:{:d}'.format(totalImprove)) return kIter,xBest,fxBest,fxNow,recordIter,recordFxNow,recordFxBest,recordPBad # 结果校验与输出 def ResultOutput(cName,nVar,xBest,fxBest,kIter,recordFxNow,recordFxBest,recordPBad,recordIter): # ====== 优化结果校验与输出 ====== fxCheck = cal_Energy(xBest,nVar) if abs(fxBest - fxCheck)>1e-3: # 检验目标函数 print("Error 2: Wrong total millage!") return else: print("\nOptimization by simulated annealing algorithm:") for i in range(nVar): print('\tx[{}] = {:.6f}'.format(i,xBest[i])) print('\n\tf(x):{:.6f}'.format(fxBest)) return # 加粗样式 def main(): # 参数设置,优化问题参数定义,模拟退火算法参数设置 [cName, nVar, xMin, xMax, tInitial, tFinal, alfa, meanMarkov, scale] = ParameterSetting() # print([nVar, xMin, xMax, tInitial, tFinal, alfa, meanMarkov, scale]) # 模拟退火算法 [kIter,xBest,fxBest,fxNow,recordIter,recordFxNow,recordFxBest,recordPBad] \ = OptimizationSSA(nVar,xMin,xMax,tInitial,tFinal,alfa,meanMarkov,scale) # print(kIter, fxNow, fxBest, pBadAccept) # 结果校验与输出 ResultOutput(cName, nVar,xBest,fxBest,kIter,recordFxNow,recordFxBest,recordPBad,recordIter) if __name__ == '__main__': main()
4、程序运行结果
x_Initial:-143.601793,331.160277, f(x_Initial):959.785447 i:0,t(i):100.00, badAccept:0.469136, f(x)_best:300.099320 i:10,t(i):81.71, badAccept:0.333333, f(x)_best:12.935760 i:20,t(i):66.76, badAccept:0.086022, f(x)_best:2.752498 ... i:200,t(i):1.76, badAccept:0.000000, f(x)_best:0.052055 i:210,t(i):1.44, badAccept:0.000000, f(x)_best:0.009448 i:220,t(i):1.17, badAccept:0.000000, f(x)_best:0.009448 improve:18 Optimization by simulated annealing algorithm: x[0] = 420.807471 x[1] = 420.950005 f(x):0.003352
加载全部内容