Python单元测试技巧 Python单元测试的9个技巧技巧
肖恩 人气:0前言:
requests
是python
知名的http
爬虫库,同样简单易用,是python
开源项目的TOP10。
pytest
是python
的单元测试框架,简单易用,在很多知名项目中应用。requests
是python
知名的http爬虫库,同样简单易用,是python
开源项目的TOP10。关于这2个项目,之前都有过介绍,本文主要介绍requests
项目如何使用pytest
进行单元测试,会达到下面3个目标:
- 熟练
pytest
的使用 - 学习如何对项目进行单元测试
- 深入
requests
的一些实现细节
本文分如下几个部分:
requests
项目单元测试状况- 简单工具类如何测试
request-api
如何测试- 底层API测试
1、requests项目单元测试状况
requests
的单元测试代码全部在 tests 目录,使用 pytest.ini 进行配置。测试除pytest外,还需要安装:
库名 | 描述 |
---|---|
httpbin | 一个使用flask实现的http服务,可以客户端定义http响应,主要用于测试http协议 |
pytest-httpbin | pytest的插件,封装httpbin的实现 |
pytest-mock | pytest的插件,提供mock |
pytest-cov | pytest的插件,提供覆盖率 |
上述依赖 master
版本在requirement-dev
文件中定义;2.24.0版本会在pipenv中定义。
测试用例使用make
命令,子命令在Makefile
中定义, 使用make ci运行所有单元测试结果如下:
$ make ci pytest tests --junitxml=report.xml ======================================================================================================= test session starts ======================================================================================================= platform linux -- Python 3.6.8, pytest-3.10.1, py-1.10.0, pluggy-0.13.1 rootdir: /home/work6/project/requests, inifile: pytest.ini plugins: mock-2.0.0, httpbin-1.0.0, cov-2.9.0 collected 552 items tests/test_help.py ... [ 0%] tests/test_hooks.py ... [ 1%] tests/test_lowlevel.py ............... [ 3%] tests/test_packages.py ... [ 4%] tests/test_requests.py .................................................................................................................................................................................................... [ 39%] 127.0.0.1 - - [10/Aug/2021 08:41:53] "GET /stream/4 HTTP/1.1" 200 756 .127.0.0.1 - - [10/Aug/2021 08:41:53] "GET /stream/4 HTTP/1.1" 500 59 ---------------------------------------- Exception happened during processing of request from ('127.0.0.1', 46048) Traceback (most recent call last): File "/usr/lib64/python3.6/wsgiref/handlers.py", line 138, in run self.finish_response() x......................................................................................... [ 56%] tests/test_structures.py .................... [ 59%] tests/test_testserver.py ......s.... [ 61%] tests/test_utils.py ..s................................................................................................................................................................................................ssss [ 98%] ssssss..... [100%] ----------------------------------------------------------------------------------- generated xml file: /home/work6/project/requests/report.xml ----------------------------------------------------------------------------------- ======================================================================================= 539 passed, 12 skipped, 1 xfailed in 64.16 seconds ========================================================================================
可以看到requests
在1分钟内,总共通过了539个测试用例,效果还是不错。使用 make coverage
查看单元测试覆盖率:
$ make coverage ----------- coverage: platform linux, python 3.6.8-final-0 ----------- Name Stmts Miss Cover ------------------------------------------------- requests/__init__.py 71 71 0% requests/__version__.py 10 10 0% requests/_internal_utils.py 16 5 69% requests/adapters.py 222 67 70% requests/api.py 20 13 35% requests/auth.py 174 54 69% requests/certs.py 4 4 0% requests/compat.py 47 47 0% requests/cookies.py 238 115 52% requests/exceptions.py 35 29 17% requests/help.py 63 19 70% requests/hooks.py 15 4 73% requests/models.py 455 119 74% requests/packages.py 16 16 0% requests/sessions.py 283 67 76% requests/status_codes.py 15 15 0% requests/structures.py 40 19 52% requests/utils.py 465 170 63% ------------------------------------------------- TOTAL 2189 844 61% Coverage XML written to file coverage.xml
结果显示requests
项目总体覆盖率61%,每个模块的覆盖率也清晰可见。
单元测试覆盖率使用代码行数进行判断,Stmts
显示模块的有效行数,Miss显示未执行到的行。如果生成html
的报告,还可以定位到具体未覆盖到的行;pycharm
的coverage
也有类似功能。
tests下的文件及测试类如下表:
文件 | 描述 |
---|---|
compat | python2和python3兼容 |
conftest | pytest配置 |
test_help,test_packages,test_hooks,test_structures | 简单测试类 |
utils.py | 工具函数 |
test_utils | 测试工具函数 |
test_requests | 测试requests |
testserver\server | 模拟服务 |
test_testserver | 模拟服务测试 |
test_lowlevel | 使用模拟服务测试模拟网络测试 |
2、简单工具类如何测试
2.1 test_help 实现分析
先从最简单的test_help
上手,测试类和被测试对象命名是对应的。先看看被测试的模块help.py
。这个模块主要是2个函数 info
和 _implementation
:
import idna def _implementation(): ... def info(): ... system_ssl = ssl.OPENSSL_VERSION_NUMBER system_ssl_info = { 'version': '%x' % system_ssl if system_ssl is not None else '' } idna_info = { 'version': getattr(idna, '__version__', ''), } ... return { 'platform': platform_info, 'implementation': implementation_info, 'system_ssl': system_ssl_info, 'using_pyopenssl': pyopenssl is not None, 'pyOpenSSL': pyopenssl_info, 'urllib3': urllib3_info, 'chardet': chardet_info, 'cryptography': cryptography_info, 'idna': idna_info, 'requests': { 'version': requests_version, }, }
info
提供系统环境的信息, _implementation
是其内部实现,以下划线*_*开头。再看测试类test_help
:
from requests.help import info def test_system_ssl(): """Verify we're actually setting system_ssl when it should be available.""" assert info()['system_ssl']['version'] != '' class VersionedPackage(object): def __init__(self, version): self.__version__ = version def test_idna_without_version_attribute(mocker): """Older versions of IDNA don't provide a __version__ attribute, verify that if we have such a package, we don't blow up. """ mocker.patch('requests.help.idna', new=None) assert info()['idna'] == {'version': ''} def test_idna_with_version_attribute(mocker): """Verify we're actually setting idna version when it should be available.""" mocker.patch('requests.help.idna', new=VersionedPackage('2.6')) assert info()['idna'] == {'version': '2.6'}
首先从头部的导入信息可以看到,仅仅对info
函数进行测试,这个容易理解。info测试通过,自然覆盖到_implementation
这个内部函数。这里可以得到单元测试的第1个技巧:仅对public的接口进行测试
test_idna_without_version_attribute
和test_idna_with_version_attribute
均有一个mocker
参数,这是pytest-mock提供的功能,会自动注入一个mock实现。使用这个mock对idna模块进行模拟
# 模拟空实现 mocker.patch('requests.help.idna', new=None) # 模拟版本2.6 mocker.patch('requests.help.idna', new=VersionedPackage('2.6'))
可能大家会比较奇怪,这里patch模拟的是 requests.help.idna
, 而我们在help中导入的是 inda 模块。这是因为在requests.packages
中对inda进行了模块名重定向:
for package in ('urllib3', 'idna', 'chardet'): locals()[package] = __import__(package) # This traversal is apparently necessary such that the identities are # preserved (requests.packages.urllib3.* is urllib3.*) for mod in list(sys.modules): if mod == package or mod.startswith(package + '.'): sys.modules['requests.packages.' + mod] = sys.modules[mod]
使用mocker
后,idna的__version__
信息就可以进行控制,这样info中的idna结果也就可以预期。那么可以得到第2个技巧:使用mock辅助单元测试
2.2 test_hooks 实现分析
我们继续查看hooks如何进行测试:
from requests import hooks def hook(value): return value[1:] @pytest.mark.parametrize( 'hooks_list, result', ( (hook, 'ata'), ([hook, lambda x: None, hook], 'ta'), ) ) def test_hooks(hooks_list, result): assert hooks.dispatch_hook('response', {'response': hooks_list}, 'Data') == result def test_default_hooks(): assert hooks.default_hooks() == {'response': []}
hooks
模块的2个接口default_hooks
和dispatch_hook
都进行了测试。其中default_hooks
是纯函数,无参数有返回值,这种函数最容易测试,仅仅检查返回值是否符合预期即可。dispatch_hook
会复杂一些,还涉及对回调函数(hook函数)的调用:
def dispatch_hook(key, hooks, hook_data, **kwargs): """Dispatches a hook dictionary on a given piece of data.""" hooks = hooks or {} hooks = hooks.get(key) if hooks: # 判断钩子函数 if hasattr(hooks, '__call__'): hooks = [hooks] for hook in hooks: _hook_data = hook(hook_data, **kwargs) if _hook_data is not None: hook_data = _hook_data return hook_data
pytest.mark.parametrize
提供了2组参数进行测试。第一组参数hook
和ata很简单,hook是一个函数,会对参数裁剪,去掉首位,ata是期望的返回值。test_hooks
的response
的参数是Data,所以结果应该是ata。第二组参数中的第一个参数会复杂一些,变成了一个数组,首位还是hook函数,中间使用一个匿名函数,匿名函数没有返回值,这样覆盖到 if _hook_data is not None
: 的旁路分支。执行过程如下:
hook
函数裁剪Data首位,剩余ata- 匿名函数不对结果修改,剩余ata
hook
函数继续裁剪ata首位,剩余ta
经过测试可以发现dispatch_hook
的设计十分巧妙,使用pipeline
模式,将所有的钩子串起来,这是和事件机制不一样的地方。细心的话,我们可以发现 if hooks: 并未进行旁路测试,这个不够严谨,有违我们的第3个技巧:
测试尽可能覆盖目标函数的所有分支
2.3 test_structures 实现分析
LookupDict的测试用例如下:
class TestLookupDict: @pytest.fixture(autouse=True) def setup(self): """LookupDict instance with "bad_gateway" attribute.""" self.lookup_dict = LookupDict('test') self.lookup_dict.bad_gateway = 502 def test_repr(self): assert repr(self.lookup_dict) == "<lookup 'test'>" get_item_parameters = pytest.mark.parametrize( 'key, value', ( ('bad_gateway', 502), ('not_a_key', None) ) ) @get_item_parameters def test_getitem(self, key, value): assert self.lookup_dict[key] == value @get_item_parameters def test_get(self, key, value): assert self.lookup_dict.get(key) == value
可以发现使用setup
方法配合@pytest.fixture
,给所有测试用例初始化了一个lookup_dict
对象;同时pytest.mark.parametrize
可以在不同的测试用例之间复用的,我们可以得到第4个技巧:
使用pytest.fixture
复用被测试对象,使用pytest.mark.parametriz
复用测试参数
通过TestLookupDict
的test_getitem
和test_get
可以更直观的了解LookupDict
的get和__getitem__
方法的作用:
class LookupDict(dict): ... def __getitem__(self, key): # We allow fall-through here, so values default to None return self.__dict__.get(key, None) def get(self, key, default=None): return self.__dict__.get(key, default)
- get自定义字典,使其可以使用 get 方法获取值
- __getitem__自定义字典,使其可以使用 [] 符合获取值
CaseInsensitiveDict
的测试用例在test_structures
和test_requests
中都有测试,前者主要是基础测试,后者偏向业务使用层面,我们可以看到这两种差异:
class TestCaseInsensitiveDict: # 类测试 def test_repr(self): assert repr(self.case_insensitive_dict) == "{'Accept': 'application/json'}" def test_copy(self): copy = self.case_insensitive_dict.copy() assert copy is not self.case_insensitive_dict assert copy == self.case_insensitive_dict class TestCaseInsensitiveDict: # 使用方法测试 def test_delitem(self): cid = CaseInsensitiveDict() cid['Spam'] = 'someval' del cid['sPam'] assert 'spam' not in cid assert len(cid) == 0 def test_contains(self): cid = CaseInsensitiveDict() cid['Spam'] = 'someval' assert 'Spam' in cid assert 'spam' in cid assert 'SPAM' in cid assert 'sPam' in cid assert 'notspam' not in cid
借鉴上面的测试方法,不难得出第5个技巧:
可以从不同的层面对同一个对象进行单元测试
后面的test_lowlevel
和test_requests
也应用了这种技巧
2.4 utils.py
utils中构建了一个可以写入env的生成器(由yield关键字提供),可以当上下文装饰器使用:
import contextlib import os @contextlib.contextmanager def override_environ(**kwargs): save_env = dict(os.environ) for key, value in kwargs.items(): if value is None: del os.environ[key] else: os.environ[key] = value try: yield finally: os.environ.clear() os.environ.update(save_env)
下面是使用方法示例:
# test_requests.py kwargs = { var: proxy } # 模拟控制proxy环境变量 with override_environ(**kwargs): proxies = session.rebuild_proxies(prep, {}) def rebuild_proxies(self, prepared_request, proxies): bypass_proxy = should_bypass_proxies(url, no_proxy=no_proxy) def should_bypass_proxies(url, no_proxy): ... get_proxy = lambda k: os.environ.get(k) or os.environ.get(k.upper()) ...
得出第6个技巧:涉及环境变量的地方,可以使用上下文装饰器进行模拟多种环境变量
2.5 utils测试用例
utils
的测试用例较多,我们选择部分进行分析。先看to_key_val_list
函数:
# 对象转列表 def to_key_val_list(value): if value is None: return None if isinstance(value, (str, bytes, bool, int)): raise ValueError('cannot encode objects that are not 2-tuples') if isinstance(value, Mapping): value = value.items() return list(value)
对应的测试用例TestToKeyValList:
class TestToKeyValList: @pytest.mark.parametrize( 'value, expected', ( ([('key', 'val')], [('key', 'val')]), ((('key', 'val'), ), [('key', 'val')]), ({'key': 'val'}, [('key', 'val')]), (None, None) )) def test_valid(self, value, expected): assert to_key_val_list(value) == expected def test_invalid(self): with pytest.raises(ValueError): to_key_val_list('string')
重点是test_invalid
中使用pytest.raise对异常的处理:
第7个技巧:使用pytest.raises对异常进行捕获处理
TestSuperLen介绍了几种进行IO模拟测试的方法:
class TestSuperLen: @pytest.mark.parametrize( 'stream, value', ( (StringIO.StringIO, 'Test'), (BytesIO, b'Test'), pytest.param(cStringIO, 'Test', marks=pytest.mark.skipif('cStringIO is None')), )) def test_io_streams(self, stream, value): """Ensures that we properly deal with different kinds of IO streams.""" assert super_len(stream()) == 0 assert super_len(stream(value)) == 4 def test_super_len_correctly_calculates_len_of_partially_read_file(self): """Ensure that we handle partially consumed file like objects.""" s = StringIO.StringIO() s.write('foobarbogus') assert super_len(s) == 0 @pytest.mark.parametrize( 'mode, warnings_num', ( ('r', 1), ('rb', 0), )) def test_file(self, tmpdir, mode, warnings_num, recwarn): file_obj = tmpdir.join('test.txt') file_obj.write('Test') with file_obj.open(mode) as fd: assert super_len(fd) == 4 assert len(recwarn) == warnings_num def test_super_len_with_tell(self): foo = StringIO.StringIO('12345') assert super_len(foo) == 5 foo.read(2) assert super_len(foo) == 3 def test_super_len_with_fileno(self): with open(__file__, 'rb') as f: length = super_len(f) file_data = f.read() assert length == len(file_data)
使用StringIO
来模拟IO操作,可以配置各种IO的测试。当然也可以使用BytesIO/cStringIO
, 不过单元测试用例一般不关注性能,StringIO
简单够用。
pytest
提供tmpdir
的fixture
,可以进行文件读写操作测试
可以使用__file__来进行文件的只读测试,__file__表示当前文件,不会产生副作用。
第8个技巧:使用IO模拟配合进行单元测试
2.6 request-api如何测试
requests
的测试需要httpbin
和pytest-httpbin
,前者会启动一个本地服务,后者会安装一个pytest插件,测试用例中可以得到httpbin
的fixture
,用来操作这个服务的URL。
类 | 功能 |
---|---|
TestRequests | requests业务测试 |
TestCaseInsensitiveDict | 大小写不敏感的字典测试 |
TestMorselToCookieExpires | cookie过期测试 |
TestMorselToCookieMaxAge | cookie大小 |
TestTimeout | 响应超时的测试 |
TestPreparingURLs | URL预处理 |
... | 一些零碎的测试用例 |
坦率的讲:这个测试用例内容庞大,达到2500行。看起来是针对各种业务的零散case,我并没有完全理顺其组织逻辑。我选择一些感兴趣的业务进行介绍, 先看TimeOut的测试:
TARPIT = 'http://10.255.255.1' class TestTimeout: def test_stream_timeout(self, httpbin): try: requests.get(httpbin('delay/10'), timeout=2.0) except requests.exceptions.Timeout as e: assert 'Read timed out' in e.args[0].args[0] @pytest.mark.parametrize( 'timeout', ( (0.1, None), Urllib3Timeout(connect=0.1, read=None) )) def test_connect_timeout(self, timeout): try: requests.get(TARPIT, timeout=timeout) pytest.fail('The connect() request should time out.') except ConnectTimeout as e: assert isinstance(e, ConnectionError) assert isinstance(e, Timeout)
test_stream_timeout
利用httpbin
创建了一个延迟10s响应的接口,然后请求本身设置成2s,这样可以收到一个本地timeout
的错误。test_connect_timeout
则是访问一个不存在的服务,捕获连接超时的错误。
TestRequests
都是对requests
的业务进程测试,可以看到至少是2种:
class TestRequests: def test_basic_building(self): req = requests.Request() req.url = 'http://kennethreitz.org/' req.data = {'life': '42'} pr = req.prepare() assert pr.url == req.url assert pr.body == 'life=42' def test_path_is_not_double_encoded(self): request = requests.Request('GET', "http://0.0.0.0/get/test case").prepare() assert request.path_url == '/get/test%20case ... def test_HTTP_200_OK_GET_ALTERNATIVE(self, httpbin): r = requests.Request('GET', httpbin('get')) s = requests.Session() s.proxies = getproxies() r = s.send(r.prepare()) assert r.status_code == 200 ef test_set_cookie_on_301(self, httpbin): s = requests.session() url = httpbin('cookies/set?foo=bar') s.get(url) assert s.cookies['foo'] == 'bar'
- 对url进行校验,只需要对
request
进行prepare
,这种情况下,请求并未发送,少了网络传输,测试用例会更迅速 - 需要响应数据的情况,需要使用
httbin
构建真实的请求-响应数据
3、底层API测试
testserver
构建一个简单的基于线程的tcp服务,这个tcp服务具有__enter__
和__exit__
方法,还可以当一个上下文环境使用。
class TestTestServer: def test_basic(self): """messages are sent and received properly""" question = b"success?" answer = b"yeah, success" def handler(sock): text = sock.recv(1000) assert text == question sock.sendall(answer) with Server(handler) as (host, port): sock = socket.socket() sock.connect((host, port)) sock.sendall(question) text = sock.recv(1000) assert text == answer sock.close() def test_text_response(self): """the text_response_server sends the given text""" server = Server.text_response_server( "HTTP/1.1 200 OK\r\n" + "Content-Length: 6\r\n" + "\r\nroflol" ) with server as (host, port): r = requests.get('http://{}:{}'.format(host, port)) assert r.status_code == 200 assert r.text == u'roflol' assert r.headers['Content-Length'] == '6'
test_basic
方法对Server进行基础校验,确保收发双方可以正确的发送和接收数据。先是客户端的sock发送question
,然后服务端在handler中判断收到的数据是question
,确认后返回answer
,最后客户端再确认可以正确收到answer响应。test_text_response
方法则不完整的测试了http协议。按照http协议的规范发送了http请求,Server.text_response_server
会回显请求。下面是模拟浏览器的锚点定位不会经过网络传输的testcase:
def test_fragment_not_sent_with_request(): """Verify that the fragment portion of a URI isn't sent to the server.""" def response_handler(sock): req = consume_socket_content(sock, timeout=0.5) sock.send( b'HTTP/1.1 200 OK\r\n' b'Content-Length: '+bytes(len(req))+b'\r\n' b'\r\n'+req ) close_server = threading.Event() server = Server(response_handler, wait_to_close_event=close_server) with server as (host, port): url = 'http://{}:{}/path/to/thing/#view=edit&token=hunter2'.format(host, port) r = requests.get(url) raw_request = r.content assert r.status_code == 200 headers, body = raw_request.split(b'\r\n\r\n', 1) status_line, headers = headers.split(b'\r\n', 1) assert status_line == b'GET /path/to/thing/ HTTP/1.1' for frag in (b'view', b'edit', b'token', b'hunter2'): assert frag not in headers assert frag not in body close_server.set()
可以看到请求的path
是 /path/to/thing/#view=edit&token=hunter2
,其中 # 后面的部分是本地锚点,不应该进行网络传输。上面测试用例中,对接收到的响应进行判断,鉴别响应头和响应body中不包含这些关键字。
结合requests
的两个层面的测试,我们可以得出第9个技巧:
构造模拟服务配合测试
小结:
简单小结一下,从requests
的单元测试实践中,可以得到下面9个技巧:
- 仅对
public
的接口进行测试 - 使用
mock
辅助单元测试 - 测试尽可能覆盖目标函数的所有分支
- 使用
pytest.fixture
复用被测试对象,使用pytest.mark.parametriz
复用测试参数 - 可以从不同的层面对同一个对象进行单元测试
- 涉及环境变量的地方,可以使用上下文装饰器进行模拟多种环境变量
- 使用
pytest.raises
对异常进行捕获处理 - 使用IO模拟配合进行单元测试
- 构造模拟服务配合测试
加载全部内容