Java Broadcast State Java 数据流之Broadcast State
Vicky_Tang 人气:0想了解Java 数据流之Broadcast State的相关内容吗,Vicky_Tang在本文为您仔细讲解Java Broadcast State的相关知识和一些Code实例,欢迎阅读和指正,我们先划重点:Java,Broadcast,State,Java,数据流,下面大家一起来学习吧。
一、BroadcastState 的介绍
广播状态(Broadcast State)是 Operator State 的一种特殊类型。如果我们需要将配置 、规则等低吞吐事件流广播到下游所有 Task 时,就可以使用 BroadcastState。下游的 Task 接收这些配置、规则并保存为 BroadcastState,所有Task 中的状态保持一致,作用于另一个数据流的计算中。
简单理解:一个低吞吐量流包含一组规则,我们想对来自另一个流的所有元素基于此规则进行评估。
场景:动态更新计算规则。
广播状态与其他操作符状态的区别在于:
- 它有一个 map 格式,用于定义存储结构
- 它仅对具有广播流和非广播流输入的特定操作符可用
- 这样的操作符可以具有不同名称的多个广播状态
二、BroadcastState 操作流程
三、案例实现
- 从端口读取Json数据作为事件流
- 从Mysql读取数据作为广播流
- 关联广播流和事件流
- 匹配对应的用户信息
package cn.kgc.broadcast import java.sql.{Connection, DriverManager, PreparedStatement} import com.alibaba.fastjson.JSON import org.apache.flink.api.common.state.{BroadcastState, MapStateDescriptor} import org.apache.flink.configuration.Configuration import org.apache.flink.streaming.api.datastream.BroadcastStream import org.apache.flink.streaming.api.functions.co.BroadcastProcessFunction import org.apache.flink.streaming.api.functions.source.{RichParallelSourceFunction, SourceFunction} import org.apache.flink.streaming.api.scala._ import org.apache.flink.util.Collector // (001,'tom',18,'北京',15830010002) // 定义样例类 接受 MySQL的用户数据 case class BaseUserInfo(id:Long,name:String,age:Int,city:String,phone:Long) // user_id、user_name、user_addrss、behaviour、url // 输出数据类型 case class UserVisitInfo(id:Long,name:String,city:String,behaviour:String,url:String) // 实现广播ProcessFunction class MyBroadcastFunc extends BroadcastProcessFunction[String,(Long, BaseUserInfo),UserVisitInfo]{ lazy val mapStateDes = new MapStateDescriptor[Long, BaseUserInfo]("mapState",classOf[Long],classOf[BaseUserInfo]) // 处理的是日志流中的每条数据 override def processElement(value: String, ctx: BroadcastProcessFunction[String, (Long, BaseUserInfo), UserVisitInfo]#ReadOnlyContext, out: Collector[UserVisitInfo]): Unit = { // {"user_id":"001","ts":"2021-07-10 11:10:05","behaviour":"browse","url":"https://www.tb1.com/1.html"} val user_id = JSON.parseObject(value).getLong("user_id") val behaviour = JSON.parseObject(value).getString("behaviour") val url = JSON.parseObject(value).getString("url") val mapState = ctx.getBroadcastState(mapStateDes) val userInfo = mapState.get(user_id) out.collect(UserVisitInfo(user_id,userInfo.name,userInfo.city,behaviour,url)) } // 处理的是广播流的每个值 override def processBroadcastElement(value: (Long, BaseUserInfo), ctx: BroadcastProcessFunction[String, (Long, BaseUserInfo), UserVisitInfo]#Context, out: Collector[UserVisitInfo]): Unit = { val mapState: BroadcastState[Long, BaseUserInfo] = ctx.getBroadcastState(mapStateDes) mapState.put(value._1,value._2) } } class UserSourceFunc extends RichParallelSourceFunction[BaseUserInfo]{ var conn:Connection = _ var statement: PreparedStatement = _ var flag:Boolean = true override def open(parameters: Configuration): Unit = { conn = DriverManager.getConnection("jdbc:mysql://localhost:3306/test?characterEncoding=utf-8&serverTimezone=UTC","root","liu911223") statement = conn.prepareStatement("select * from base_user") } override def run(ctx: SourceFunction.SourceContext[BaseUserInfo]): Unit = { while (flag){ Thread.sleep(5000) val resultSet = statement.executeQuery() while (resultSet.next()){ val id = resultSet.getLong(1) val name = resultSet.getString(2) val age = resultSet.getInt(3) val city = resultSet.getString(4) val phone = resultSet.getLong(5) ctx.collect(BaseUserInfo(id,name,age,city,phone)) } } } override def cancel(): Unit = { flag = false } override def close(): Unit = { if (statement != null) statement.close() if (conn != null) conn.close() } } object BroadcastDemo01 { def main(args: Array[String]): Unit = { val env = StreamExecutionEnvironment.getExecutionEnvironment env.setParallelism(1) // 定义为KV,一方面是为了广播的时候定义为map,另一方面是为了做关联操作 val userBaseDS: DataStream[(Long, BaseUserInfo)] = env.addSource(new UserSourceFunc) .map(user => (user.id, user)) val mapStateDes = new MapStateDescriptor[Long, BaseUserInfo]("mapState",classOf[Long],classOf[BaseUserInfo]) val broadCastStream: BroadcastStream[(Long, BaseUserInfo)] = userBaseDS.broadcast(mapStateDes) // 日志JSON数据 val dataInfoDS: DataStream[String] = env.socketTextStream("master",1314) dataInfoDS.connect(broadCastStream) .process(new MyBroadcastFunc) .print() env.execute() } }
加载全部内容