C++STL string类介绍及模拟实现 关于C++STL string类的介绍及模拟实现
世_生 人气:0一、标准库中的string类
1.string类
字符串的表示字符序列的类
标准的字符串类提供了对此类对象的支持,其接口类似于标准字符容器的接口,但添加了专门用于操作
单字节字符字符串的设计特性。
string类是使用char(即作为它的字符类型,使用它的默认char_traits和分配器类型(关于模板的更多信
息,请参阅basic_string)。
string类是basic_string模板类的一个实例,它使用char来实例化basic_string模板类,并用char_traits
和allocator作为basic_string的默认参数(根于更多的模板信息请参考basic_string)。
注意,这个类独立于所使用的编码来处理字节:如果用来处理多字节或变长字符(如UTF-8)的序列,这个
类的所有成员(如长度或大小)以及它的迭代器,将仍然按照字节(而不是实际编码的字符)来操作。
2.string类中的常用接口说明+模拟实现
2.1 string类对象的常见构造+模拟实现
代码演示:
#include<iostream> #include<string> using namespace std; int main() { string s1; string s4("hello world"); string s5("hello world", 7); string s6(10, 'x'); string s2(s4); string s3(s4, 6, 3); cout << "s1:"<< s1.c_str() << endl; cout << "s4:" << s4.c_str() << endl; cout << "s5:" << s5.c_str() << endl; cout << "s6:" << s6.c_str() << endl; cout << "s2:" << s2.c_str() << endl; cout << "s3:" << s3.c_str() << endl; }
运行结果:
模拟实现
由于上面有些接口不常用,所以我就模拟实现了一部分常用的接口
string (const char* s)
namespace cxy { class string { public: string(const char*s = "") { if (s==nullptr) return; _size = strlen(s); _capacity = _size; _str = new char[_capacity + 1]; strcpy(_str, s); } const char* c_str() { return _str; } private: size_t _size; size_t _capacity; char* _str; }; }
string (const string& str)
void swap (string& str)
namespace cxy { class string { public: void swap(string& str) { //下面的swap会调用库里面的接口 ::swap(_size, str._size); ::swap(_capacity, str._capacity); ::swap(_str, str._str); } string(const char*s = "") { if (s==nullptr) return; _size = strlen(s); _capacity = _size; _str = new char[_capacity + 1]; strcpy(_str, s); } string(const string& str) :_str(nullptr), _size(0), _capacity(0) { string tmp(str._str); swap(tmp); } char* c_str() { return _str; } private: size_t _size; size_t _capacity; char* _str; }; }
2.2 string类对象的容量操作+模拟实现
代码演示:
int main() { string s1("hello world"); cout <<"s1.size(): " <<s1.size() << endl; cout <<"s1.length(): "<< s1.length() << endl; cout <<"s1.capacity(): "<<s1.capacity() << endl; cout <<"s1:"<< s1 << endl; cout << endl; s1.clear(); cout <<"s1:"<< s1 << endl; cout << "s1.size(): " << s1.size() << endl; cout << "s1.capacity(): " << s1.capacity() << endl; cout << endl; s1 = "hello world"; cout << "s1:" << s1 << endl; cout << "s1.size(): " << s1.size() << endl; cout << "s1.capacity(): " << s1.capacity() << endl; s1.resize(17,'x'); //当n>capacity,则扩容,并且把0~27上位置的空余位置填充‘字符' cout << "s1:" << s1 << endl; cout << "s1.size(): " << s1.size() << endl; cout << "s1.capacity(): " << s1.capacity() << endl; s1.resize(27, 'x'); //当size<n<capacity,则把0~27上位置的空余位置填充‘字符' cout << "s1:" << s1 << endl; cout << "s1.size(): " << s1.size() << endl; cout << "s1.capacity(): " << s1.capacity() << endl; s1.resize(5, 'x'); //当n<size,则只保留n个‘字符',空间大小不变 cout << "s1:" << s1 << endl; cout << "s1.size(): " << s1.size() << endl; cout << "s1.capacity(): " << s1.capacity() << endl; cout << endl; string s2("hello world"); s2.reserve(5); //当n<=capacity时,空间大小不变,且不改变数据内容 cout << "s2:" << s2 << endl; cout << "s2.size(): " << s2.size() << endl; cout << "s2.capacity(): " << s2.capacity() << endl; s2.reserve(100); //当n>capacity时,空间会增大 cout << "s2:" << s2 << endl; cout << "s2.size(): " << s2.size() << endl; cout << "s2.capacity(): " << s2.capacity() << endl; }
运行结果:
得知:
reserve和resize的区别:reserve不会影响内容,resize会影响内容。
模拟实现
size_t size() const
返回字符串的有效长度
namespace cxy { class string { public: size_t size()const { return _size; } private: size_t _size; size_t _capacity; char* _str; }; }
size_t capacity() const
返回空间的大小
namespace cxy { class string { public: size_t capacity()const { return _capacity; } private: size_t _size; size_t _capacity; char* _str; }; }
bool empty() const
检测字符串释放为空串,是返回true,否则返回false
namespace cxy { class string { public: bool empty()const { return _str == 0; } private: size_t _size; size_t _capacity; char* _str; }; }
void clear()
清空有效字符 ,不会改变容量
namespace cxy { class string { public: void clear() { _size = 0; _str[_size] = '\0'; } private: size_t _size; size_t _capacity; char* _str; }; }
void reserve (size_t n = 0)
请求改变容量 ,此功能对字符串长度没有影响,无法改变其内容
如果 n 大于当前字符串容量,则该函数会导致容器将其容量增加到 n 字符(或更大)
n小于当前字符串容量时,不会发生改变
namespace cxy { class string { public: void reserve(size_t n=0) { if (n > _capacity) { char *tmp = new char[n + 1]; strncpy(tmp,_str,_size+1); delete[]_str; _str = tmp; _capacity = n; } private: size_t _size; size_t _capacity; char* _str; }; }
补充:strncpy是C语言中的函数
char * strncpy ( char * destination, const char * source, size_t num )
功能:
- 将source中的字符串复制到destination中,且复制num个字符个数,如果在没有复制完num个字符之前,找到了source的末尾,则目标填充零,直到向其编写了总共num字符。
- 如果来source中的字符有效长度大于数字,则目的地末尾不会隐含任何空字符('\0')。
- 因此,在这种情况下,目的地不应被视为无效终止的 C 字符串(因此读取它将溢出,所以这种时候记得要在末尾添加'\0')。
void resize (size_t n, char c)
void resize (size_t n)
将有效字符的个数该成n个,多出的空间用字符c填充
- 将字符串大小重新变为n字符的长度。
- 如果 n 小于当前字符串长度,则当前值将缩短为其第一个 n 字符,从而删除 n 之外的字符。
- 如果 n 大于当前字符串长度,则通过在末尾插入尽可能多的字符c以达到 n 的大小来扩展当前内容。
- 如果指定c,则新元素初始化为c的副本,否则,它们是值初始化字符(空字符)。
namespace cxy { class string { public: void resize(size_t n,char c='\0') { if (n<_size) { _size = n; _str[_size] = '\0'; } else { if (n > _capacity) { reserve(n); } memset(_str + _size, c, n - _size); _size = n; _str[_size] = '\0'; } private: size_t _size; size_t _capacity; char* _str; }; }
补充:memset是C语言中的函数
void * memset ( void * ptr, int value, size_t num )
功能:
- 将value传到prt中,以第一个位置开始传,传num个,传完为止。
总结
- size()与length()方法底层实现原理完全相同,引入size()的原因是为了与其他容器的接口保持一致,一般情况下基本都是用size()。
- clear()只是将string中有效字符清空,
不改变底层空间大小。
- resize(size_t n) 与 resize(size_t n, char c)都是将字符串中有效字符个数改变到n个,不同的是当字符个数增多时:resize(n)用0来填充多出的元素空间,resize(size_t n, char c)用字符c来填充多出的元素空间。
注意:resize在改变元素个数时,如果是将元素个数增多,可能会改变底层容量的大
- reserve(size_t res_arg=0):为string预留空间,不改变有效元素个数,当
reserve的参数小于string的底层空间总大小时,reserver不会改变容量大小。
2.3 string类对象的访问及遍历操作+模拟实现
代码演示:
int main() { string s("hello world"); cout << "operator[] :"; for (size_t i = 0; i < s.size(); i++) cout << s[i] ; cout << endl; //迭代器 string::iterator it = s.begin(); cout << "iterator :"; while (it != s.end()) { cout << *it ; ++it; } cout << endl; //范围for cout << "范围for :"; for (auto ch : s) { cout << ch ; } cout << endl; }
模拟实现
const char& operator[] (size_t pos) const
namespace cxy { class string { public: const char& operator[](size_t pos)const { assert(pos < _size); return _str[pos]; } private: size_t _size; size_t _capacity; char* _str; }; }
iterator begin() iterator end()
namespace cxy { class string { public: typedef char* iterator; iterator begin() { return _str; } iterator end() { return _str+_size; } private: size_t _size; size_t _capacity; char* _str; }; }
C++11:范围for
在这里不实现,知道怎么用就行
2.4 string类对象的修改操作+模拟实现
代码演示:
int main() { string s("hello world"); s.push_back('K'); cout << s << endl; s.append("SSSSS"); cout << s << endl; s += "FF"; cout << s << endl; cout << s.find("KSS") << endl; s.erase(11, 8); cout << s << endl; }
运行结果:
模拟实现:只实现了一些常用的接口
void push_back (char c)
在字符串后面插入字符c
namespace cxy { class string { public: void push_back(char c) { if (_size == _capacity) { reserve(_capacity * 2); } _str[_size] = c; _str[_size+1] = '\0'; _size++; } private: size_t _size; size_t _capacity; char* _str; }; }
string& append (const char*s)
在字符串后面追加字符串s
namespace cxy { class string { public: string &append(const char*s) { size_t len = strlen(s)+_size; if (len > _capacity) { reserve(len); } strncpy(_str + _size, s, len - _size+1); _size = len; return *this; } private: size_t _size; size_t _capacity; char* _str; }; }
string& operator+= (const char* s)
在字符串后面追加字符串s
namespace cxy { class string { public: string& operator+=(const char*s) { append(s); return *this; } private: size_t _size; size_t _capacity; char* _str; }; }
const char* c_str() const
返回c格式的字符串
namespace cxy { class string { public: const char* c_str()const { return _str; } private: size_t _size; size_t _capacity; char* _str; }; }
size_t find (const char* s, size_t pos = 0) const
从字符串pos位置开始往后找字符串s,返回该字符串s在字符串中的位置
namespace cxy { class string { public: size_t find(const char*s,size_t pos=0)const { char *str = _str+pos; while (*str) { char* str_s = str; const char* tmp = s; while (*str_s&&*tmp==*str_s) { tmp++; str_s++; } if (*tmp=='\0') return str - _str; else str++; } return -1; } private: size_t _size; size_t _capacity; char* _str; }; }
string& erase (size_t pos = 0, size_t len = npos)
擦除字符串的一部分,减少其长度
static const size_t npos = 0; namespace cxy { class string { public: string &erase(size_t pos = 0, size_t len = npos) { assert(pos < _size); if (len+pos >= _size) { _str[pos] = '\0'; _size = pos; } else { strcpy(_str + pos, _str + pos + len); _size -= len; } return *this; } private: size_t _size; size_t _capacity; char* _str; }; }
2.5 string类非成员函数+模拟实现
模拟实现
istream& operator>> (istream& is, string& str)
namespace cxy { class string { public: private: size_t _size; size_t _capacity; char* _str; }; istream& operator >> (istream& is, string& str) { str.clear(); char ch; ch = is.get(); while (ch != ' '&&ch != '\0') { str += ch; ch = is.get(); } return is; } }
说明一下:这个函数实现放在全局,是因为他的is要和对象str抢第一个位置,如果放在string类里面实现,那么第一个位置是this指针,也就是str对象,在用这个函数的时候就会很变扭。
ostream& operator<< (ostream& os, const string& str);
namespace cxy { class string { public: private: size_t _size; size_t _capacity; char* _str; }; ostream& operator<< (ostream& os, string& str) { for (auto ch:str) { os << ch; } return os; } }
istream& getline (istream& is, string& str)
获取一行字符串
namespace cxy { class string { public: private: size_t _size; size_t _capacity; char* _str; }; istream&getline(istream&is ,string&s) { s.clear(); char ch; ch = is.get(); while (ch != '\0') { s += ch; ch = is.get(); } return is; } }
到此这篇关于 关于C++STL string类的介绍及模拟实现的文章就介绍到这了,更多相关C++STL string类介绍及模拟实现内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!
加载全部内容