C++的最短路径的弗洛伊德算法 C++的最短路径的弗洛伊德算法案例讲解
riba2534 人气:0想了解C++的最短路径的弗洛伊德算法案例讲解的相关内容吗,riba2534在本文为您仔细讲解C++的最短路径的弗洛伊德算法的相关知识和一些Code实例,欢迎阅读和指正,我们先划重点:C++最短路径,C++最短路径的弗洛伊德算法,下面大家一起来学习吧。
现在我们有这么一张图:
我们要做的是求出从某一点到达任意一点的最短距离,我们先用邻接矩阵来建图,map[i][j]表示从i点到j点的距离,把自己到自己设为0,把自己到不了的边初始化为无穷大,代码为:
//初始化 for(int i=1; i<=n; i++) for(int j=1; j<=n; j++) if(i==j) map[i][j]=0; else map[i][j]=inf; //读入边 for(int i=1; i<=m; i++) { scanf("%d%d%d",&t1,&t2,&t3); map[t1][t2]=t3; }
最后,建好的图可以用表格来表示:
现在,我们来思考,假设我们来找一个中转的点,看他们的路程会不会改变,我们先以1号顶点作为中转点最为例子,制图:
我们发现,图有了变化,我们怎么判断以1号顶点作为中转点图的路程是不是更短呢,我们只需要判断map[i][1]+map[1][j]的路程是不是比map[i][j]的路程更短,就可以判断,
代码为:
for(int i=1; i<=n; i++) for(int j=1; j<=n; j++) if(map[i][1]+map[1][j]<map[i][j]) map[i][j]=map[i][1]+map[1][j];
现在该怎么办呢,我们接着以2号顶点作为中转点,很简单代码修改一句就就可以:
for(int i=1; i<=n; i++) for(int j=1; j<=n; j++) if(map[i][2]+map[2][j]<map[i][j]) map[i][j]=map[i][2]+map[2][j];
现在我们是不是发现了一个规律,只要不断的遍历每一个点,并且以每一个点作为中转点看看它的值会不会改变,就可以得到从一个点到任意一个点的最短路径,也就是多源最短路,这就是弗洛伊德算法,代码为:
for(int k=1; k<=n; k++) for(int i=1; i<=n; i++) for(int j=1; j<=n; j++) if(map[i][k]+map[k][j]<map[i][j]) map[i][j]=map[i][k]+map[k][j];
这样就可以遍历每个顶点,找出所有的最短路,算法的复杂度为O(n^3).
对于我一开始提出的问题,完整的代码为:
#include <stdio.h> #include <string.h> #include <string> #include <iostream> #include <stack> #include <queue> #include <vector> #include <algorithm> #define mem(a,b) memset(a,b,sizeof(a)) using namespace std; const int inf=1<<29; int main() { int map[10][10],n,m,t1,t2,t3; scanf("%d%d",&n,&m);//n表示顶点个数,m表示边的条数 //初始化 for(int i=1; i<=n; i++) for(int j=1; j<=n; j++) if(i==j) map[i][j]=0; else map[i][j]=inf; //读入边 for(int i=1; i<=m; i++) { scanf("%d%d%d",&t1,&t2,&t3); map[t1][t2]=t3; } //弗洛伊德(Floyd)核心语句 for(int k=1; k<=n; k++) for(int i=1; i<=n; i++) for(int j=1; j<=n; j++) if(map[i][k]+map[k][j]<map[i][j]) map[i][j]=map[i][k]+map[k][j]; for(int i=1; i<=n; i++) { for(int j=1; j<=n; j++) printf("%10d",map[i][j]); printf("\n"); } return 0; }
给出样例:
输入:
4 8 1 2 2 1 3 6 1 4 4 2 3 3 3 1 7 3 4 1 4 1 5 4 3 12
输出:
0 2 5 4 9 0 3 4 6 8 0 1 5 7 10 0
输出的就是我建图的时候用的表格,可以表示任意一点到任意一点的最短距离。
如果有什么不对的地方,欢迎指正~~
加载全部内容