亲宝软件园·资讯

展开

Java并发控制手段 Java中常见的并发控制手段浅析

一灰灰 人气:0
想了解Java中常见的并发控制手段浅析的相关内容吗,一灰灰在本文为您仔细讲解Java并发控制手段的相关知识和一些Code实例,欢迎阅读和指正,我们先划重点:控制并发java,java并发处理,实现并发控制的方法,下面大家一起来学习吧。

前言

单实例的并发控制,主要是针对JVM内,我们常规的手段即可满足需求,常见的手段大概有下面这些

1.1 同步代码块

通过同步代码块,来确保同一时刻只会有一个线程执行对应的业务逻辑,常见的使用姿势如下

public synchronized doProcess() {
    // 同步代码块,只会有一个线程执行
}

一般推荐使用最小区间使用原则,尽量不要直接在方法上加synchronized,比如经典的双重判定单例模式

public class Single {
  private static volatile Single instance;
  private Single() {}
  public static Single getInstance() {
      if (instance == null) {
          synchronized(Single.class) {
              if (instance == null) instance = new Single();
          }
      }
      return instance;
  }
}

1.2 CAS自旋方式

比如AtomicXXX原子类中的很多实现,就是借助unsafe的CAS来实现的,如下

public final int getAndIncrement() {
    return unsafe.getAndAddInt(this, valueOffset, 1);
}


// unsafe 实现
// cas + 自选,不断的尝试更新设置,直到成功为止
public final int getAndAddInt(Object var1, long var2, int var4) {
    int var5;
    do {
        var5 = this.getIntVolatile(var1, var2);
    } while(!this.compareAndSwapInt(var1, var2, var5, var5 + var4));

    return var5;
}

1.3 锁

jdk本身提供了不少的锁,为了实现单实例的并发控制,我们需要选择写锁;如果支持多读,单实例写,则可以考虑读写锁;一般使用姿势也比较简单

private void doSome(ReentrantReadWriteLock.WriteLock writeLock) {
    try {
        writeLock.lock();
        System.out.println("持有锁成功 " + Thread.currentThread().getName());
        Thread.sleep(1000);
        System.out.println("执行完毕! " + Thread.currentThread().getName());
        writeLock.unlock();
    } catch (Exception e) {
        e.printStackTrace();
    }
}

@Test
public void lock() throws InterruptedException {
    ReentrantReadWriteLock reentrantReadWriteLock = new ReentrantReadWriteLock();

    new Thread(()->doSome(reentrantReadWriteLock.writeLock())).start();
    new Thread(()->doSome(reentrantReadWriteLock.writeLock())).start();
    new Thread(()->doSome(reentrantReadWriteLock.writeLock())).start();

    Thread.sleep(20000);
}

1.4 阻塞队列

借助同步阻塞队列,也可以实现并发控制的效果,比如队列中初始化n个元素,每次消费从队列中获取一个元素,如果拿不到则阻塞;执行完毕之后,重新塞入一个元素,这样就可以实现一个简单版的并发控制

demo版演示,下面指定队列长度为2,表示最大并发数控制为2;设置为1时,可以实现单线程的访问控制

AtomicInteger cnt = new AtomicInteger();

private void consumer(LinkedBlockingQueue<Integer> queue) {
    try {
        // 同步阻塞拿去数据
        int val = queue.take();
        Thread.sleep(2000);
        System.out.println("成功拿到: " + val + " Thread: " + Thread.currentThread());
    } catch (InterruptedException e) {
        e.printStackTrace();
    } finally {
        // 添加数据
        System.out.println("结束 " + Thread.currentThread());
        queue.offer(cnt.getAndAdd(1));
    }
}

@Test
public void blockQueue() throws InterruptedException {
    LinkedBlockingQueue<Integer> queue = new LinkedBlockingQueue<>(2);
    queue.add(cnt.getAndAdd(1));
    queue.add(cnt.getAndAdd(1));


    new Thread(() -> consumer(queue)).start();
    new Thread(() -> consumer(queue)).start();
    new Thread(() -> consumer(queue)).start();
    new Thread(() -> consumer(queue)).start();

    Thread.sleep(10000);
}

1.5 信号量Semaphore

上面队列的实现方式,可以使用信号量Semaphore来完成,通过设置信号量,来控制并发数

private void semConsumer(Semaphore semaphore) {
    try {
        //同步阻塞,尝试获取信号
        semaphore.acquire(1);
        System.out.println("成功拿到信号,执行: " + Thread.currentThread());
        Thread.sleep(2000);
        System.out.println("执行完毕,释放信号: " + Thread.currentThread());
        semaphore.release(1);
    } catch (Exception e) {
        e.printStackTrace();
    }
}

@Test
public void semaphore() throws InterruptedException {
    Semaphore semaphore = new Semaphore(2);

    new Thread(() -> semConsumer(semaphore)).start();
    new Thread(() -> semConsumer(semaphore)).start();
    new Thread(() -> semConsumer(semaphore)).start();
    new Thread(() -> semConsumer(semaphore)).start();
    new Thread(() -> semConsumer(semaphore)).start();

    Thread.sleep(20_000);
}

1.6 计数器CountDownLatch

计数,应用场景更偏向于多线程的协同,比如多个线程执行完毕之后,再处理某些事情;不同于上面的并发数的控制,它和栅栏一样,更多的是行为结果的统一

这种场景下的使用姿势一般如下

重点:countDownLatch 计数为0时放行

@Test
public void countDown() throws InterruptedException {
    CountDownLatch countDownLatch = new CountDownLatch(2);

    new Thread(() -> {
        try {
            System.out.println("do something in " + Thread.currentThread());
            Thread.sleep(2000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        } finally {
            countDownLatch.countDown();
        }
    }).start();

    new Thread(() -> {
        try {
            System.out.println("do something in t2: " + Thread.currentThread());
            Thread.sleep(1000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        } finally {
            countDownLatch.countDown();
        }
    }).start();

    countDownLatch.await();
    System.out.printf("结束");
}

1.7 栅栏 CyclicBarrier

CyclicBarrier的作用与上面的CountDownLatch相似,区别在于正向计数+1, 只有达到条件才放行; 且支持通过调用reset()重置计数,而CountDownLatch则不行

一个简单的demo

private void cyclicBarrierLogic(CyclicBarrier barrier, long sleep) {
    // 等待达到条件才放行
    try {
        System.out.println("准备执行: " + Thread.currentThread() + " at: " + LocalDateTime.now());
        Thread.sleep(sleep);
        int index = barrier.await();
        System.out.println("开始执行: " + index + " thread: " + Thread.currentThread() + " at: " + LocalDateTime.now());
    } catch (Exception e) {
        e.printStackTrace();
    }
}

@Test
public void testCyclicBarrier() throws InterruptedException {
    // 到达两个工作线程才能继续往后面执行
    CyclicBarrier barrier = new CyclicBarrier(2);
    // 三秒之后,下面两个线程的才会输出 开始执行
    new Thread(() -> cyclicBarrierLogic(barrier, 1000)).start();
    new Thread(() -> cyclicBarrierLogic(barrier, 3000)).start();

    Thread.sleep(4000);
    // 重置,可以再次使用
    barrier.reset();
    new Thread(() -> cyclicBarrierLogic(barrier, 1)).start();
    new Thread(() -> cyclicBarrierLogic(barrier, 1)).start();
    Thread.sleep(10000);
}

1.8 guava令牌桶

guava封装了非常简单的并发控制工具类RateLimiter,作为单机的并发控制首选

一个控制qps为2的简单demo如下:

private void guavaProcess(RateLimiter rateLimiter) {
    try {
        // 同步阻塞方式获取
        System.out.println("准备执行: " + Thread.currentThread() + " > " + LocalDateTime.now());
        rateLimiter.acquire();
        System.out.println("执行中: " + Thread.currentThread() + " > " + LocalDateTime.now());
    } catch (Exception e) {
        e.printStackTrace();
    }
}

@Test
public void testGuavaRate() throws InterruptedException {
    // 1s 中放行两个请求
    RateLimiter rateLimiter = RateLimiter.create(2.0d);
    new Thread(() -> guavaProcess(rateLimiter)).start();
    new Thread(() -> guavaProcess(rateLimiter)).start();
    new Thread(() -> guavaProcess(rateLimiter)).start();
    new Thread(() -> guavaProcess(rateLimiter)).start();
    new Thread(() -> guavaProcess(rateLimiter)).start();
    new Thread(() -> guavaProcess(rateLimiter)).start();
    new Thread(() -> guavaProcess(rateLimiter)).start();

    Thread.sleep(20_000);
}

输出:

准备执行: Thread[Thread-2,5,main] > 2021-04-13T10:18:05.263
准备执行: Thread[Thread-1,5,main] > 2021-04-13T10:18:05.263
准备执行: Thread[Thread-5,5,main] > 2021-04-13T10:18:05.264
准备执行: Thread[Thread-7,5,main] > 2021-04-13T10:18:05.264
准备执行: Thread[Thread-3,5,main] > 2021-04-13T10:18:05.263
准备执行: Thread[Thread-4,5,main] > 2021-04-13T10:18:05.264
准备执行: Thread[Thread-6,5,main] > 2021-04-13T10:18:05.263
执行中: Thread[Thread-2,5,main] > 2021-04-13T10:18:05.267
执行中: Thread[Thread-6,5,main] > 2021-04-13T10:18:05.722
执行中: Thread[Thread-4,5,main] > 2021-04-13T10:18:06.225
执行中: Thread[Thread-3,5,main] > 2021-04-13T10:18:06.721
执行中: Thread[Thread-7,5,main] > 2021-04-13T10:18:07.221
执行中: Thread[Thread-5,5,main] > 2021-04-13T10:18:07.720
执行中: Thread[Thread-1,5,main] > 2021-04-13T10:18:08.219

1.9 滑动窗口TimeWindow

没有找到通用的滑动窗口jar包,一般来讲滑动窗口更适用于平滑的限流,解决瞬时高峰问题

一个供参考的实现方式:

固定大小队列,队列中每个数据代表一个时间段的计数,

访问 -》 队列头拿数据(注意不出队)-》判断是否跨时间段 -》 同一时间段,计数+1 -》跨时间段,新增数据入队,若

扔不进去,表示时间窗满,队尾数据出队

问题:当流量稀疏时,导致不会自动释放过期的数据

解决方案:根据时间段设置定时任务,模拟访问操作,只是将计数改为 + 0

1.10 小结

本文给出了几种单机版的并发控制的技术手段,主要目的是介绍了一些可选的方案,技术细节待后续补全完善,当然如果有其他的建议,欢迎评论交流

加载全部内容

相关教程
猜你喜欢
用户评论