亲宝软件园·资讯

展开

OpenCV人脸美白 OpenCV-Python实现人脸美白算法的实例

一天一篇Python库 人气:0
想了解OpenCV-Python实现人脸美白算法的实例的相关内容吗,一天一篇Python库在本文为您仔细讲解OpenCV人脸美白 的相关知识和一些Code实例,欢迎阅读和指正,我们先划重点:OpenCV人脸美白,下面大家一起来学习吧。

人脸美白原理

人脸美白原理说透了,就是一种图像的颜色空间处理,所以我们需要通过颜色空间进行设计。

不过,我们先来参考以下PS对于图像美白的处理步骤:

通过PS的操作,我们大致可以知道需要创建一个与原图同等大小维度的图像,然后全部赋值为白色,然后通过图像图像加权和将两个图像叠加即可。

不过,这里明显存在很多问题,在PS中,我们虽然创建了全白色的图层,但是我们可以剪裁或者使用画笔工具只让白色叠加倒人物身上。而程序中,我们这么做会导致整个图像偏白,效果非常不理想。

那么,我们就需要考虑一个新的思路来实现人脸美白效果。

根据论文“A Two-Stage Contrast Enhancement Algorithm for Digital Images”,采用映射表,使原图在色阶上有所增强,并在图像两端亮度相对减弱,中间增强,则会产生不错的美白效果,又能使图像白的更自然。

这里,我们提供一个美白映射表Color_list:

Color_list = [
	1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 31, 33, 35, 37, 39,
	41, 43, 44, 46, 48, 50, 52, 53, 55, 57, 59, 60, 62, 64, 66, 67, 69, 71, 73, 74,
	76, 78, 79, 81, 83, 84, 86, 87, 89, 91, 92, 94, 95, 97, 99, 100, 102, 103, 105,
	106, 108, 109, 111, 112, 114, 115, 117, 118, 120, 121, 123, 124, 126, 127, 128,
	130, 131, 133, 134, 135, 137, 138, 139, 141, 142, 143, 145, 146, 147, 149, 150,
	151, 153, 154, 155, 156, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 170,
	171, 172, 173, 174, 175, 176, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187,
	188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203,
	204, 205, 205, 206, 207, 208, 209, 210, 211, 211, 212, 213, 214, 215, 215, 216,
	217, 218, 219, 219, 220, 221, 222, 222, 223, 224, 224, 225, 226, 226, 227, 228,
	228, 229, 230, 230, 231, 232, 232, 233, 233, 234, 235, 235, 236, 236, 237, 237,
	238, 238, 239, 239, 240, 240, 241, 241, 242, 242, 243, 243, 244, 244, 244, 245,
	245, 246, 246, 246, 247, 247, 248, 248, 248, 249, 249, 249, 250, 250, 250, 250,
	251, 251, 251, 251, 252, 252, 252, 252, 253, 253, 253, 253, 253, 254, 254, 254,
	254, 254, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
	255, 255, 255, 256]

实现人脸美白

既然人脸美白的原理,以及美白的颜色映射表都给到了你。下面,我们就可以实现人脸美白效果,具体代码如下所示:

def face_whitening(fileName):
    img = cv2.imread(fileName)
    img = cv2.bilateralFilter(img, 19, 75, 75)
    height, width, n = img.shape
    img2 = img.copy()
    for i in range(height):
        for j in range(width):
            b = img2[i, j, 0]
            g = img2[i, j, 1]
            r = img2[i, j, 2]
            img2[i, j, 0] = Color_list[b]
            img2[i, j, 1] = Color_list[g]
            img2[i, j, 2] = Color_list[r]
    cv2.imwrite("59_1.jpg",img2)

    image = Image.open("59_1.jpg")
    # 锐度调节
    enh_img = ImageEnhance.Sharpness(image)
    image_sharped = enh_img.enhance(1.2)
    # 颜色均衡调节
    con_img = ImageEnhance.Contrast(image_sharped)
    image_con = con_img.enhance(1.2)
    image_con.save("59_2.jpg")

    img1 = cv2.imread("58.jpg")
    img2 = cv2.imread("59_2.jpg")
    cv2.imshow("1", img1)
    cv2.imshow("2", img2)
    cv2.waitKey()
    cv2.destroyAllWindows()


if __name__ == "__main__":
    face_whitening("58.jpg")

运行之后,效果如下:

美白效果

加载全部内容

相关教程
猜你喜欢
用户评论