Python描述符 详解Python描述符的工作原理
不加班的程序员丶 人气:0一、前言
其实,在开发过程中,虽然我们没有直接使用到描述符,但是它在底层却无时不刻地被使用到,例如以下这些:
function
、bound method
、unbound method
装饰器property
、staticmethod
、classmethod
是不是都很熟悉?
这些都与描述符有着千丝万缕的关系,这篇文章我们就来看一下描述符背后的工作原理。
二、什么是描述符?
在解释什么是「描述符」之前,我们先来看一个简单的例子。
这个例子非常简单,我们在类 A
中定义了一个类属性 x
,然后打印它的值。
其实,除了直接定类属性之外,我们还可以这样定义一个类属性:
仔细看,这次类属性 x
不再是一个具体的值,而是一个类 Ten
。Ten
中定义了一个 __get__
方法,返回具体的值。
在 Python 中,允许把一个类属性,托管给一个类,这个属性就是一个「描述符」。
换句话说,「描述符」是一个「绑定行为」的属性。
怎么理解这句话?
回忆一下,我们开发时,一般把「行为」叫做什么?是的,「行为」一般指的是一个方法。
所以我们也可以把「描述符」理解为:对象的属性不再是一个具体的值,而是交给了一个方法去定义。
可以想一下,如果我们用一个方法去定义一个属性,这么做的好处是什么?
有了方法,我们就可以在方法内实现自己的逻辑,最简单的,我们可以根据不同的条件,在方法内给属性赋予不同的值,就像下面这样:
三、描述符协议
了解了描述符的定义,现在我们把重点放到托管属性的类上。
其实,一个类属性想要托管给一个类,这个类内部实现的方法不能是随便定义的,它必须遵守「描述符协议」,也就是要实现以下几个方法:
__get__(self, obj, type=None) __set__(self, obj, value) __delete__(self, obj)
只要是实现了以上几个方法的其中一个,那么这个类属性就可以称作描述符。
另外,描述符又可以分为「数据描述符」和「非数据描述符」:
只定义了 __get___,叫做非数据描述符 除了定义 __get__ 之外,还定义了 __set__ 或 __delete__,叫做数据描述符
它们两者有什么区别,我会在下面详述。
现在我们来看一个包含 __get__
和 __set__
方法的描述符例子:
在这例子中,类属性 age
是一个描述符,它的值取决于 Age
类。
从输出结果来看,当我们获取或修改 age
属性时,调用了 Age
的 __get__
和 __set__
方法:
- 当调用
p1.age
时,__get__
被调用,参数obj
是Person
实例,type
是type(Person)
- 当调用
Person.age
时,__get__
被调用,参数obj
是None
,type
是type(Person)
- 当调用
p1.age = 25
时,__set__
被调用,参数obj
是Person
实例,value
是25 - 当调用
p1.age = -1
时,__set__
没有通过校验,抛出ValueError
其中,调用 __set__
传入的参数,我们比较容易理解,但是对于 __get__
方法,通过类或实例调用,传入的参数是不同的,这是为什么?
这就需要我们了解一下描述符的工作原理。
四、描述符的工作原理
要解释描述符的工作原理,首先我们需要先从属性的访问说起。
在开发时,不知道你有没有想过这样一个问题:通常我们写这样的代码 a.b
,其背后到底发生了什么?
这里的 a
和 b
可能存在以下情况:
1.a 可能是一个类,也可能是一个实例,我们这里统称为对象
2.b 可能是一个属性,也可能是一个方法,方法其实也可以看做是类的属性
其实,无论是以上哪种情况,在 Python 中,都有一个统一的调用逻辑:
1.先调用 __getattribute__
尝试获得结果
2.如果没有结果,调用 __getattr__
用代码表示就是下面这样:
我们这里需要重点关注一下 __getattribute__
,因为它是所有属性查找的入口,它内部实现的属性查找顺序是这样的:
1.要查找的属性,在类中是否是一个描述符
2.如果是描述符,再检查它是否是一个数据描述符
3.如果是数据描述符,则调用数据描述符的 __get__
4.如果不是数据描述符,则从 __dict__
中查找
5.如果 __dict__
中查找不到,再看它是否是一个非数据描述符
6.如果是非数据描述符,则调用非数据描述符的 __get__
7.如果也不是一个非数据描述符,则从类属性中查找
8.如果类中也没有这个属性,抛出 AttributeError
异常
写成代码就是下面这样:
如果不好理解,你最好写一个程序测试一下,观察各种情况下的属性的查找顺序。
到这里我们可以看到,在一个对象中查找一个属性,都是先从 __getattribute__
开始的。
在 __getattribute__
中,它会检查这个类属性是否是一个描述符,如果是一个描述符,那么就会调用它的 __get__
方法。但具体的调用细节和传入的参数是下面这样的:
如果 a
是一个实例,调用细节为:
所以我们就能看到上面例子输出的结果。
五、数据描述符和非数据描述符
了解了描述符的工作原理,我们继续来看数据描述符和非数据描述符的区别。
从定义上来看,它们的区别是:
- 只定义了
__get___
,叫做非数据描述符 - 除了定义
__get__
之外,还定义了__set__
或__delete__
,叫做数据描述符
此外,我们从上面描述符调用的顺序可以看到,在对象中查找属性时,数据描述符要优先于非数据描述符调用。
在之前的例子中,我们定义了 __get__
和 __set__
,所以那些类属性都是数据描述符。
我们再来看一个非数据描述符的例子:
这段代码,我们定义了一个相同名字的属性和方法 foo
,如果现在执行 A().foo
,你觉得会输出什么结果?
答案是 abc
。
为什么打印的是实例属性 foo
的值,而不是方法 foo
呢?
这就和非数据描述符有关系了。
我们执行 dir(A.foo)
,观察结果:
看到了吗?A
的 foo
方法其实实现了 __get__
,我们在上面的分析已经得知:只定义 __get__
方法的对象,它其实是一个非数据描述符,也就是说,我们在类中定义的方法,其实本身就是一个非数据描述符。
所以,在一个类中,如果存在相同名字的属性和方法,按照上面所讲的 __getattribute__
中查找属性的顺序,这个属性就会优先从实例中获取,如果实例中不存在,才会从非数据描述符中获取,所以在这里优先查找的是实例属性 foo
的值。
到这里我们可以总结一下关于描述符的相关知识点:
- 描述符必须是一个类属性
__getattribute__
是查找一个属性(方法)的入口__getattribute__
定义了一个属性(方法)的查找顺序:数据描述符、实例属性、非数据描述符、类属性- 如果我们重写了
__getattribute__
方法,会阻止描述符的调用 - 所有方法其实都是一个非数据描述符,因为它定义了
__get__
六、描述符的使用场景
了解了描述符的工作原理,那描述符一般用在哪些业务场景中呢?
在这里我用描述符实现了一个属性校验器,你可以参考这个例子,在类似的场景中去使用它。
首先我们定义一个校验基类 Validator
,在 __set__
方法中先调用 validate
方法校验属性是否符合要求,然后再对属性进行赋值。
现在,当我们对 Person
实例进行初始化时,就可以校验这些属性是否符合预定义的规则了。
七、function与method
我们再来看一下,在开发时经常看到的 function
、unbound method
、bound method
它们之间到底有什么区别?
来看下面这段代码:
从结果我们可以看出它们的区别:
function
准确来说就是一个函数,并且它实现了__get__
方法,因此每一个function
都是一个非数据描述符,而在类中会把function
放到__dict__
中存储- 当
function
被实例调用时,它是一个bound method
- 当
function
被类调用时, 它是一个unbound method
function
是一个非数据描述符,我们之前已经讲到了。
而 bound method
和 unbound method
的区别就在于调用方的类型是什么,如果是一个实例,那么这个 function
就是一个 bound method
,否则它是一个 unbound method
。
八、property/staticmethod/classmethod
我们再来看 property
、staticmethod
、classmethod
。
这些装饰器的实现,默认是 C 来实现的。
其实,我们也可以直接利用 Python 描述符的特性来实现这些装饰器,
property
的 Python 版实现:
除此之外,你还可以实现其他功能强大的装饰器。
由此可见,通过描述符我们可以实现强大而灵活的属性管理功能,对于一些要求属性控制比较复杂的场景,我们可以选择用描述符来实现。
加载全部内容